Высота опущенная из вершины тупого угла на большее основание равнобедренной трапеции делит его на две части имеющиеся длины 8 и 20 найдите площадь этой трапеции если острый угол трапеции равен 45 градусам
Имеем треугольник АВС со сторонами АВ:ВС=15:41; и высотой ВД; Проекции сторон на основание АС равно АД=12; СД=40; Обозначим коэффициенты подобия сторон AB за Х, она будет равна 15 Х, а проекцию стороны СД за У и она будет равна 41У; Тогда справедливо равенство:15Х+41У=56;Так как их сумма равна 56 по УСЛОВИЮ ЗАДАЧИ; Приняв коэффициенты подобия за 1 в обоих случаях имеем15+41=56; Проверим данный ответ через длину их общей высоты АД, она должна иметь одно и то же значение: АД^2=41^2-40^2=81; 15^2-12^2=81; 81=81; Решение верно! ответ:АВ=15; ВС=41;
36°, 54°, 144°, 126°
Объяснение:
Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180°.
Пусть 1-й угол четырёхугольника равен 2х, тогда второй угол - 3х, а третий - 8х .
Сумма противоположных углов четырёхугольника (1-го и 3-го) равна
2х + 8х = 10х.
Тогда сумма 2-го и 4-го углов также равна 10х
И 4-й угол равен
10х - 3х = 7х.
Сумма углов четырёхугольника равна 360°.
10х + 10х = 360°
20х = 360°
х = 18°
1-й угол равен 2х = 36°, 2-й угол равен 3х = 54°,
3-й угол равен 9х = 144°, 4-й угол равен 7х = 126°