ответ:Номер 1
ЕК||АD при секущей FB,т к
<МFB=<АВF=56 градусов,как внутренние накрест лежащие
<С+<М=180 градусов,как односторонние при EK||AD и секущей СМ,тогда
<М=180-72=108 градусов
Номер 2
Углы при основании равнобедренного треугольника равны между собой
<1=56 градусов
<2=<3=(180-56):2=62 градуса
Номер 3
<АВЕ=<DBC=15 градусов,как вертикальные
Треугольник DBC
<D=48 градусов
<B=15 градусов
<С=180-(48+15)=180-63=117 градусов
Треугольник АСF
<F=64 градуса
<DCB+<ACF=180 градусов,как смежные
<АСF=180-117=63 градуса
<А=180-(64+63)=180-127=53 градуса
Объяснение:
Объяснение:
Строим сторону АВ = 14 м, взяв для простоты 1 мм за 1 м. С вершинами в точках А и В, со стороной АВ строим углы в 120°. Откладываем на полученных сторонах отрезки АС = BD = 14 м и строим с вершинами в точках С и D углы 120°. Откладываем на полученных сторонах СМ = DP = 14 м, соединяем точки М и Р. Шестиугольник ABDPMC есть план Семиглавой башни. Этот многоугольник называется правильным, так как у него стороны и углы равны. Точка О есть центр правильного многоугольника. Из него сторона АВ видна под углом AOB.
Отрезок, соединяющий середины боковых сторон трапеции, называется средней линией трапеции. EF = (BC+AD) /2 = EF = 1 ; BC+AD = 2;
<AFB - прямой угол. Треугольник AFB прямоугольный. АВ - гипотенуза.
AE=EB. EF - медиана в треугольнике AFB.
Медиана, проведенная из вершины прямого угла, равна половине гипотенузы. AB = 2*EF = 2*1 = 2
Трапеция равнобокая. СD = AB = 2.
Периметр равен p= AB+BC+CD+AD = (AB+CD) +(BC+AD) = (2+2) + 2 = 6
ответ: p = 6