Итак, расстояние между прямой и плоскостью это перпендикуляр опущенный с любой точки прямой на плоскость. Допустим на прямой эта точка будет В , а на плоскости это будет точка Х. Теперь с этой же точки опускаем перпендикуляр на сторону АД . Пусть это будет точка У . В даном случае ВУ = АВ*синус30= 12*1/2= 6 . Теперь важно понять что у нас образовался треугольник ВУХ где угол ВХУ равно 90 градусов и это означает что он прямоугольный . С условия мы знаем что ХВ=3*корень с 3 . Также мы нашли что ВУ = 6 . Значит отсюда угол между плоскостью ромба и плоскостью альфа равен арккосинус(ВУ/ХВ) . = арккосинус (корень с 3 на 2) = 60 градусовответ 60
Биссектриса треугольника АК делит сторону ВС на отрезки, пропорциональные двум другим сторонам, АВ и АС, поэтому
ВК : АВ = КС : АС, откуда АС = АВ · КС/ВК
АС = 16 · 9/4 = 36 (см)
ответ: АС = 36см