по теореме синусов AC/sin30°=BC/sin45°
BC=ACsin45°/sin30°=3√2(√2/2)/(1/2)=6
Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
По теореме синусов:
Стороны треугольника пропорциональны синусам противолежащих углов:
AC/sin30 = BC/sin45;
BC = AC*sin45/sin30
BC = 3÷1/2 = 6 ( см )