Вравнобедренном треугольнике авс с основанием ас на стороне вс выбрана точка е, а нас основании - точка d так, что ∠с = ∠сde. докажите, что ав ║de (дано, доказать, доказательство) нарисуйте чертеж к : )
Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
Задача решается через векторы.
Построим вектор
Середина D отрезка AB может быть найдена откладыванием половины вектора
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты
Вектор высоты
(I)
Таким образом вектор
Вектор
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет
Значит
В итоге
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ: