Оскільки у рівнобедреному трикутнику кути при основі рівні, а сума кутів = 180°, то кути при основі = 180°-100°=80° : 2 = 40°
У рівнобедренному трикутнику медіана проведена з вершини кута, утворених бічними сторонами являється і висотою і бісектрисою. То ж ∠D ми знайшли і він = 40°, ∠N=90° тому що він утворений медіаною, яка є висотою (висота перпендикулярна до основи, тобто має кут 90°), а ∠DFN = половині ∠DFE (бо медіана є бісектрисою і ділить цей кут навпіл) = 100° : 2 = 50°
Площадь боковой грани призмы: 144:3=48 (три равных боковых грани). Значит сторона основания призмы и высота призмы равна √48= 4√3. Многогранник, вершинами которого служат центры всех граней призмы - это две равные правильные пирамиды. Высота одной такой пирамиды равна половине высоты призмы (2√3), а основание - правильный треугольник со сторонами, равными средним линиям треугольника - основания призмы - 2√3. So=(√3/4)*a² или So=3√3. Vпирамиды=(1/3)So*h=(1/3)3√3*2√3=6. Тогда объем искомого многогранника равен 2*Vпирамиды или V=2*6=12. ответ: V=12.
Відповідь:
∠N=90°
∠D = 40°
∠F = 50°
Пояснення:
Оскільки у рівнобедреному трикутнику кути при основі рівні, а сума кутів = 180°, то кути при основі = 180°-100°=80° : 2 = 40°
У рівнобедренному трикутнику медіана проведена з вершини кута, утворених бічними сторонами являється і висотою і бісектрисою. То ж ∠D ми знайшли і він = 40°, ∠N=90° тому що він утворений медіаною, яка є висотою (висота перпендикулярна до основи, тобто має кут 90°), а ∠DFN = половині ∠DFE (бо медіана є бісектрисою і ділить цей кут навпіл) = 100° : 2 = 50°