Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
Гипотенуза всегда больше катета, поэтому гипотенуза равна 52. Пусть гипотенуза - с=52, а катет б=20. Пусть высота будет h, а другой катет - а. По теореме Пифагора
Обозначим отрезки гипотенузы, на которые высота делит гипотенузу, за х (ближе к катету б) и 52-х. Теперь составим два уравнения (у нас есть два маленьких прямоугольных треугольника, образованных катетом, высотой и отрезком гипотенузы):
Теперь приравняем эти уравнения, возведём всё, что нужно, в квадрат, перенесём всё в одну сторону и получим:
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.