Площадь трапеции равна произведению высоты на полусумму оснований. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований. h=(BC+AD):2 ⇒ h(ABCD)=(12+20):2=16 см. S(ABCD)=h•(12+20):2=16•16=256 см².
Подробнее: В равнобедренной трапеции диагонали равны. Точкой пересечения они делятся пополам и образуют с основаниями равнобедренные прямоугольные треугольники. Высота каждого из них - медиана и равна половине гипотенузы (соответствующего основания трапеции). ОЕ=ВС/2, ОК=AD/2 Высота трапеции h=ЕК=ЕО+ОК. EK=ВС/2+АD:2, т.е.h= (ВС+AD):2 ⇒S=16•16=256 см²
Объяснение:
https://ru-static.z-dn.net/files/df0/646f97f1e63f10a6f643a1ac8d8a22fa.png
Объяснение:
Из точки Е проведем отрезок ЕК, параллельный АВ.
Противоположные стороны параллелограмма параллельны, тоесть СВ//DE => ЕА//КВ и DE//CK
Так как в четырехугольнике КЕАВ стороны попарно параллельны, следовательно КЕАВ – параллелограмм.
ВЕ – биссектриса угла КВА по условию и диагональ параллелограмма КЕАВ.
Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм – ромб.
Следовательно: КЕАВ – ромб
У ромба все стороны равны. Исходя из этого: ЕА=КВ=АВ=8 см.
СD=AB=8 так как противоположные стороны параллелограмма равны.
Р(АВСD)=АВ+ВС+CD+AD=AB+BK+KC+CD+DE+EA=8+8+KC+8+DE+8=32+KC+DE
Так как Р(ABCD)=46 см по условию, то получим уравнение:
32+КС+DE=46
KC+DE=14 см
Так как ЕК//АВ, а АВ//CD, то ЕК//CD;
DE//CK (доказано ранее);
Исходя из этого: CDEK – параллелограмм.
Противоположные стороны параллелограмма равны, тоесть DE=CK.
Тогда 2DE=14 см
DE=7 см
ответ: 7 см