Поскольку при вращении фигуры получается два равных конуса
Тогда площадь поверхности такого тела будет равна площади поверхности одного из этих конусов умноженное на два
Следовательно из того что точка пересечения диагоналей делит их на четыре равных отрезка, то радиус основания конуса равен половине диагонали, т.е 4 см В то время, как и высота равна 4
Тогда R=H Отсюда можно найти L образующую конуса по теореме Пифагора
L=корень из (4²+4²) =4 корней из 2
Следовательно площадь поверхности конуса равна piRL
И равна 4 корней из двух *3,14*4)≈48 корней их двух
Построим к данной задаче рисунок. 1. Строим окружность с центром О. 2. Проведем диаметр в этой окружности ВС. 3. На окружности ставим точку А. 4. точку А соединим с Точками А и В. ΔАВС- прямоугольный, ∠ВАС - вписанный, опирается на диаметр. ∠ВАС=90°ю 5. С точки А опускаем перпендикуляр АD на диаметр ВС. 6. Проводим радиус АО. Теперь переходим к решению задачи. По условию длина окружности равна 2πR=52π: 2R=52; R=52/2=26 см. ΔАОВ - равнобедренный; ОВ=ОА=26 см. ΔАОD - прямоугольный, по теореме Пифагора ОD²=ОА²-АD²=26²-24²=100; ОD=√100=10 см. ВD=ОВ+ОD=26+10=36 см. СD= ОС+ОD=26-10=16 см. ответ: 16 см; 36 см.
Дано: Тело вращения АВСD (квадрат)
ВD=AC=8см (диагонали квадрата равны)
Ось вращения АС
Найти S поверхности тела вращения
Поскольку при вращении фигуры получается два равных конуса
Тогда площадь поверхности такого тела будет равна площади поверхности одного из этих конусов умноженное на два
Следовательно из того что точка пересечения диагоналей делит их на четыре равных отрезка, то радиус основания конуса равен половине диагонали, т.е 4 см В то время, как и высота равна 4
Тогда R=H Отсюда можно найти L образующую конуса по теореме Пифагора
L=корень из (4²+4²) =4 корней из 2
Следовательно площадь поверхности конуса равна piRL
И равна 4 корней из двух *3,14*4)≈48 корней их двух
И площадь поверхности тела равна 48*2=96 см²