Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!
ABCD - параллелограмм
ВН - высота
AH = 1
HD = 28
BD = 53
Найдем сторону AD.
AD = AH + HD
AD = 1 + 28
AD = 29
Рассмотрим треугольник BHD. угол BHD - прямой, так как высота в параллелограмме опускается перпендикулярно основанию. Значит треугольник прямоугольный.
Воспользуемся теоремой Пифагора:
BD^2 = BH^2 + HD^2
53^2 = BH^2 + 28^2
BH^2 = 53^2 - 28^2
BH^2 = (53 - 28) * (53 + 28)
BH^2 = 25 * 81
BH^2 = 2025
BH = корень из 2025
BH = 45
S = a*h
S = AD * BH
S = 29 * 45
S = 1305
ответ: 1305