М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лисёнка2005
Лисёнка2005
05.03.2023 17:24 •  Геометрия

Ac=35 ch=14√6 найсти cos cah решить

👇
Открыть все ответы
Ответ:
хамзикош
хамзикош
05.03.2023

    Опустим из вершины В высоту трапеции ВН. Высота равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности, а больший - полусумме оснований. АН=(10-2):2=4 см  Из треугольника АВН по т. Пифагора ВН=3 см.

    Противоположные стороны трапеции параллельны. Биссектриса угла ВАD при них – секущая. ∠ВЕА=∠ЕАD – накрестлежащие. Но ∠ВАЕ=∠ЕАD, т.к. АЕ - биссектриса. ⇒ ∆ АВЕ - равнобедренный (т.к.углы при основании АЕ равны). АВ=ВЕ=5 см.

  Проведем из Е параллельно АВ прямую до пересечения с АD  в точке М. В параллелограмме АВЕМ противоположные стороны параллельны и равны, значит, ЕМ=АВ=ВЕ=АМ=5, ⇒ АВЕМ - ромб.

  Высота трапеции ВН - высота ромба. Площадь ромба равна произведению высоты на сторону, к которой проведена. Ѕ(АВЕМ)=ВН•АМ=3•5=15 см²

  Биссектриса угла АВЕ – меньшая диагональ ромба ВМ и  образует с высотой ромба и частью его стороны прямоугольный треугольник ВНМ, в котором ВН и МН - катеты. ВН=3 см, МН=АМ-АН=1см  По т.Пифагора ВМ=√(BH²+HM²)=√(9+1)=√10. Биссектриса ВО угла  АВЕ в ∆ АВЕ равна половине ВМ. ВО=(√10)/2; BO²=10/4=2,5 см²


Вравнобедренной трапеции abcd основания ad и bc равны 10 см и 2 см соответственно, а боковые стороны
4,6(47 оценок)
Ответ:
ankaschamina20
ankaschamina20
05.03.2023
AM ⊥BM ( AB диаметр большой окружности )
OC ⊥ BM ( OC ⊥ BC ,где  O центр малой окружности , BC касательная) ⇒ AM | | OC .  MC/CB= AO/OB  (обобщенная теорема Фалеса) .  
2,4 /4 =r/(2R -r) ⇔   r=3R/4   (1) .
Из ΔBCO  по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16  ⇔ R(R-r) =4   (2).
R(R -3R/4) =4 ⇒  R =4. ⇒  r=3R/4 = 3.

AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.  
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²)  = 2,4√5. 
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5  =3,2√5 .
4,4(39 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ