Соединим центр О окружности с концами хорды АВ. ОА=ОВ=R.
Треугольник АОВ - равнобедренный. Проведем высоту ОН этого треугольника.
Угол ОНВ=углу ОНА=90º
«Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один»
Следовательно, и к середине хорды можно провести только один перпендикуляр.
Высота ОН - медиана равнобедренного треугольника.
АН=ВН. Точка Н - середина АВ.
Следовательно, ОН, проходящий через середину АВ, есть срединный перпендикуляр хорды АВ, ч.т.д.
Секущая - прямая по отношению к двум прямым, которая пересекает их в двух точках. При пересечении двух прямых секущей образуются накрест лежащие, односторонние и соответственные углы.Всего четыре пары.Решим на примере двух пар (тк все 4 пары попарно равны).
∠1 и ∠3 — вертикальные, следовательно, они равны. ∠2 и ∠4 — вертикальные, следовательно, они равны. ∠1 и ∠2 — смежные углы, ∠1 + ∠2 = 180°. ∠4 и ∠3 — смежные углы, ∠3 + ∠4 = 180°. Получаем, что ∠1 + ∠2 + ∠3 + ∠4 = 360°
Пусть градусная мера первого угла х, тогда второго — 4х. Составим уравнение:
х + 4х + х + 4х = 360, 10х=360, х = 36;
4х = 36 • 4 = 144. Имеем: ∠1 = 36°; ∠2 = 144°; ∠3 = 36°; ∠4 = 144°.
ответ: 36°; 144°.
Рисунок приблизительный,углы не обозначены.