1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
Внешний угол правильного многоугольника и его внутренний угол являются смежными, значит, их сумма равна 180°.
Т.к. по условию задачи внутренний угол в 8 раз больше внешнего, то пусть внешний угол х°, тогда внутренний угол будет равен (8х)° (см. рис.). Составим и решим уравнение:
х + 8х = 180.
9х = 180,
х = 180 : 9,
х = 20.
Значит, внутренний угол правильного многоугольника равен
8 · 20° = 160°.
Внутренний угол правильного многоугольника находят по формуле:
180° · (n - 2) / n, где n - число сторон правильного многоугольника.
Имеем:
180° · (n - 2) / n = 160°,
180° · (n - 2) =160° · n,
9 · (n - 2) = 8 · n,
9n - 18 = 8n,
9n - 8n = 18,
n = 18.
Значит, наш правильный многоугольник имеет 18 сторон.
ответ: 18 сторон.