Пусть х см- 1 катет, а у см- 2 катет. Тогда решим систему уравнений: 1) {х+у=11 {х^2+у^2=61 2) {х^2+2*х*у+у^2=121 {х^2+у^2=61 3) {-х^2-2*х*у-у^2=-121 {х^2+у^2=61 4) {-2*х*у=-60 {х+у=11 5) {х*у=30 {х+у=11 6) {х=11-у {(11-у)*у=30 •Рассмотрим отдельно вот это уравнение: (11-у)*у=30 -у^2+11у-30=0 D=121-4*(-1)*30=441 y1=(-11+21)/2=5 y2=(-11-21)/2=-16 Второй корень не подходит по смыслу задачи (катет не может быть отрецателен). Значит, вернёмся к системе: 7) {у=5 {х=6 Итак, катеты найдены, теперь по формуле площади прямоугольного треугольника: S=1/2*a*b, где a и b - его катеты. S=1/2*5*6=15 см^2. ответ: 15 см^2.
Допустим, это треугольник АВС, высота - АН, биссектриса-АЕ, угол 10 градусов-это угол НАЕ.Так как НАЕ равен 10 градусам, а из условия следует, что АНЕ равен 90 градусов = мы можем для начала найти угол АЕН. Так как сумма углов треугольника должна быть равна 180 град., находим : 180 - (90+10)=80 - это угол АЕН.Так как сторона ВС-это как бы развернутый угол - значит он равен 180 градусов, поэтому мы можем найти угол АЕС : 180-80=100 - это угол АЕС.Так как биссектриса делит угол пополам - значит углы ВАН и ЕАС должны быть равны по 45 градусов(потому что их сумма=90 градусов), но не забываем о 10 градусах , поэтому выходит, что угол ВАН = 30, а ЕАС=45 градусов.Ну а теперь можем найти угол АВС. АВС=180-(90+35)=55 градТеперь еще один острый угол АСВ. АСВ=180-(55+90)=35 градусовответ: АЕС =100: ВАН=30: АСВ=35: ЕАС=45.
у равнобедренного треугольника все углы равны 60°
по свойствам равнобедренных треугольников