1) тк в осевом сечении конуса у нас лежит равнобедренный треугольник и угол при вершине 90 градусов то значит что это прямоугольный треугольник с двумя равными катетами (образующими) по 4 дм значит гипотенуза , которая равна двум радиусам , будет равна по теореме пифагора 4 корень из 2; а равна она двум радиусам потому что высота проведённая из вершины прямого угла треугольника на основание конуса равна медиане и попадает она в центр окружности основания, получается что радиус равен 2 корень из 2; 2) площадь боковой равна пи*радиус*образующую=пи*2 корень из 2*4=8 корень из двух *пи; 3) объём равен площади основания на высоту; площадь основания пи*радиус в квадрате а высота из осевого сечения по теореме пифагора можно найти: корень из( 16 - 8)= корень из 8 = два корень из двух ; объём равен пи*8*8=64*пи извини что без рисунка возможно здесь даже есть ошибки я так представил
Итак, пусть будет вписан шестиугольник ABCDEF (см. приложение). Количество вершин многоугольника не влияет на решение)) Проведем радиусы OA и OB. Они будут равными как радиусы одной окружности. Проведем высоту OH, которая будет являться одновременно радиусом вписанной окружности и равна 3 по условию. Так как треугольник равнобедренный, то OH будет также являться медианой. Так как, AB - сторона многоугольника и основание треугольника AOB, равная 6√3, а OH - медиана, то AH = (6√3)÷2 = 3√3. Так как треугольник AOH - прямоугольник, а OA - гипотенуза, то воспользуемся т. Пифагора: OA = √((3√3)²+3²) = √36 = 6. Значит, радиус OA описанной окружности равен 6.