1) Удалите номера неверных утверждений:
1. Если один из острых углов прямоугольного треугольника равен 73о, то второй острый угол равен 27о. - неверно, 17°
2. Если углы при основании равнобедренного треугольника равны по 60о, то такой треугольник – правильный. - верно, третий угол тоже 60°
3. Существует треугольник со сторонами 3,4,5. - существует, это прямоугольный треугольник, "египетский"
2) Удалите номер верных утверждений:
1. Если два катета одного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны. - верно
2. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180о. - верно
3. Если в треугольнике два угла равны, то он равнобедренный. - верно
3) Сформулируйте теорему о катете прямоугольного треугольника, лежащего против угла в 30 градусов. - Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
4) Острые углы прямоугольного треугольника относятся как 12:18. Найдите эти углы.
Сумма острых углов прямоугольного треугольника составляет 90 градусов. Пусть ∠1=12х°, ∠2=18х°, тогда 12х+18х=90; 30х=90; х=3.
∠1=12*3=36°; ∠2=18*3=54°
ответ: 36°, 54°
тогда AD = х - DB = х - 1,8
По теореме Пифагора в прямоугольном треугольнике ADC: AC^2=AD^2+CD^2, т.е. 4^2=(х - 1,8)^2 + CD^2
(По св-ву высоты в прямоугольном треугольнике, проведенной из прямого угла к гипотенузе) CD^2 = DB^2 * AD, т.е. CD^2 = 1,8(х - 1,8)
Получаем 16 = х^2 - 3,6х + 3,24 + 1,8х -3,24х^2 - 1,8x - 16 = 0
D1 = 0,81 = 16 = 16,81
х1 = -3,2 - не соответствует условию задачи
х2 = 5
ответ: AB = 5