Объяснение:
Пусть будет трапеция АВСD, ВС и AD основания, ВС=1, AD=17, угол ВСА = угол АСD.
Угол ВСА = угол САD как накрест лежащие (AD||ВС), следовательно, угол АСD = угол САD, значит, CD=AD=АВ=17. Проведём высоты СН и ВМ, они равны между собой, а значит, треугольники АВМ и СНD равны, значит, АМ=HD. ВС=МН=1, потому что МВСН - прямоугольник, а значит, АМ=НD=(АD-1)\2=8. По теореме Пифагора из треугольника АВМ мы находим ВМ=15.
А теперь по формуле (ВС+AD)*ВМ\2=135 кв. см. Мы нашли площадь.
ответ: 135 кв. см
Секущая - прямая по отношению к двум прямым, которая пересекает их в двух точках. При пересечении двух прямых секущей образуются накрест лежащие, односторонние и соответственные углы.Всего четыре пары.Решим на примере двух пар (тк все 4 пары попарно равны).
∠1 и ∠3 — вертикальные, следовательно, они равны. ∠2 и ∠4 — вертикальные, следовательно, они равны. ∠1 и ∠2 — смежные углы, ∠1 + ∠2 = 180°. ∠4 и ∠3 — смежные углы, ∠3 + ∠4 = 180°. Получаем, что ∠1 + ∠2 + ∠3 + ∠4 = 360°
Пусть градусная мера первого угла х, тогда второго — 4х. Составим уравнение:
х + 4х + х + 4х = 360, 10х=360, х = 36;
4х = 36 • 4 = 144. Имеем: ∠1 = 36°; ∠2 = 144°; ∠3 = 36°; ∠4 = 144°.
ответ: 36°; 144°.
Рисунок приблизительный,углы не обозначены.