Объяснение: Дано: АВСД – ромб , О-т. пересечения диагоналей.
Доказать: ∠ВАС=∠ДАС ; АС ⊥ ВД.
Доказательство.
Рассмотрим ΔАВД : О – середина ВД (так как ромб является параллелограммом, то его диагонали в точке пересечения делятся пополам). Кроме того, из определения ромба следует, что АВ=АД . Значит, треугольник АВД – равнобедренный; АО является медианой этого треугольника, проведённой к основанию, а, значит, и биссектрисой, и высотой. Из этого следует, что: АО⊥ ВД, то есть диагонали ромба перпендикулярны; ∠ВАС=∠ДАС , то есть диагонали ромба являются биссектрисами его углов (равенство остальных углов можно доказать аналогично).
Объяснение:
1)4+9=13частей.
2)26/13=2. см приходится на одну часть.
3)4*2=8 см. первый отрезок гипотенузы.; 2*9=18 см второй отрезок гипотенузы.
4) вся гипотенуза: 2*3=26 см.
Рассмотрим треугольники АВК и АКС. ( АК -высота).
Найдем высоту в Δ АВК.
АК²=АВ²-8²;
АК²=АС²-18². ( из второго Δ АКС).
Приравняем высоты.
АВ²-64=АС²-324.
АС²-АВ²=324-64=260.(1 уравнение).Для простоты: в²-а²=260.
Мы знаем:
АВ²+АС²=26² = 676 .(2 уравнение). Для простоты: а²+в²=676.
Получили систему уравнений. Решаем систему методом подстановки.
а²=208 ; в²=260+208=468.
а=√208≈14,4 см; в=√468≈21,6 см.