Так как в трапеции угол А =60, угол ABD=90, то угол ADB=30. Так как BD биссектриса угла D, то угол D=60. Угол А равен углу D, значит трапеция равнобедренная, т. е. AB=CD. Сумма углов трапеции 360, значит угол B=360-(60+60)/2=120. Угол CBD=угол B-угол ABD=120-90=30. Угол BDC тоже равен 30 (т. к. BD биссектриса) , значит треугольник BCD равнобедренный, BC=CD=AB. Если провести высоту BH, то в треугольнике ABH угол А=60, AHB=90, следовательно угол ABH=30. В прямоугольном треугольнике против угла в 30 лежит катет, равный половине гипотенузы, AH=1/2 AB. Значит AD=BC+2AH=BC+AB=2AB. Периметр=AB+BC+CD+AD=AB+AB+AB+2AB=5AB. AB=Периметр/5, AB=20/5=4. AD=2AB=2*4=8
Проведем в параллелограмме ABCD диагональ BD. Рассмотрим треугольники ABD и CDB. 1) сторона BD — общая 2)∠ABD=∠CDB (как внутренние накрест лежащие при AB∥CD и секущей BD) 3) ∠ADB=∠CBD (как внутренние накрест лежащие при AD∥BC и секущей BD) Значит, ∆ABD= ∆CDB (по стороне и двум прилежащим к ней углам).Из равенства треугольников следует равенство соответствующих сторон:AB=CD, AD=BCи равенство соответствующих углов:∠A=∠C.В пунктах 2) и 3) обосновано, что ∠ABD=∠CDB и ∠ADB=∠CB.Следовательно,∠ABC=∠ABD+∠CBD=∠CDB+∠ADB=∠ADC,то есть, ∠B=∠D.Что и требовалось доказать.
c²=9
c=3