Пусть abc - произвольный треугольник. проведем через вершину b прямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки a и d лежали по разные стороны от прямой bc.углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd.сумма всех трех углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
Касательные АС и ВД образуют угол, биссектриса которого проходит через центры окружностей О1О2. Половина этого угла α равна углу между радиусами R1и R2 , проведенными в точку касания и прямыми АВ и СД. Проведём отрезок из точки касания меньшей окружности параллельно О1О2 до прямой СД. sinα = (R2-R1)/(R2+R1)= (99-22)/(99+22) = 7/11 ≈ 0,636364. Расстояние от середины АВ до R1 равно 22*(7/11) = 14. Расстояние от середины СД до R2 равно 99*(7/11) = 63.
ответ: расстояние между прямыми АВ и CD равно (22+99)+14-63 = 72.
и периметр равен 8Х, тогда 8Х=36.8
Х=4.6
2)Так как это восьмиугольник,тогда
1 угол равен 360:8 и равен 45