<Х=118°
Объяснение:
∆ABD- прямоугольный треугольник, т.к. <АВD вписанный угол опирается на дугуАD=180°
Сумма острых углов в прямоугольном треугольнике равна 90°
<DAB+<BDA=90°
<DAB=90°-<BDA=90°-28°=62°
<DAB- вписанный угол опирается на дугуВD(меньшая)
Тогда дугаВD(меньшая)=2*<DAB=2*62°=124°
Вся окружность составляет полный угол который равен 360°
дугаВD(меньшая)+дугаВD(боль)=360°
ДугаВD(боль)=360°-дугаВD(меньшая)=
=360°-124°=236°
<ВСD- вписанный угол опирается на дугуВD(боль)
<ВCD=дугаВD(боль):2=236°:2=118°
Обозначение:
дугаВD(боль)- большая дугаBD
Площадь трапеции находится по формуле
где a, b -- основания трапеции, h -- высота.
h = 10 см, S = 240 см² по условию
Пусть меньшее основание равно x см, тогда большее равно (x + 4) см.
Составим уравнение, используя формулу площади трапеции:
Таким образом, меньшее основание BC равно 22 см, а большее AD равно (22+4) = 26 см.
В прямоугольной трапеции одна из боковых сторон равна высоте, то есть AB = 10 см.
Проведём из точки С высоту CH. Тогда HD = AD - BC = 26 - 22 = 4 см
CH = h = 10 см. По теореме Пифагора найдём CD:
ответ: 10 см, 22 см, 26 см, 2√29 см