* * * * * * * * * * * * * * * * * * * * * * *
Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° , ∠BCD =135°, а CD = 27.
ответ: 9√6.
Объяснение: Через вершину B проведем прямую параллельную
боковой стороне СD до пересечения с основанием AD в точке E .
BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .
Из ΔBAE : AB/sin(∠BEA) = BE/sin(∠BEA) * * *теорема синусов * * *
AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =
= 9√6. * * * sin45°= (√2)/2 , sin60°=(√3)/2 * * *
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.