Меньшее основание АВ=16, большее основание DC = х, Исходя из свойств трапеции средняя линия LM=(AB+DC)/2, из условии задачи средняя линия поделена диагоналями трапеции на три равные части, следовательно отрезок LN=NK=KM, где NK- это отрезок средней линии пересечения диагоналей трапеции, исходя из этого следует, что LM=3*NK, из свойств трапеции отрезок пересечения диагоналей равен половине разницы оснований трапеции NK=(DC-AB)/2, теперь совместим формулы. Итак: LM=3*NK, LM= 3*(DC-AB)/2, LM=(AB+DC)/2, следовательно 3*(DC-AB)/2=(AB+DC)/2, сокращаем делитель 2 и раскрываем скобки 3*DC-3*AB=AB+DC, 2DC=4*AB, DC=2*AB ответ: большее основание равно 32.
1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
Дано: апофема А правильной четырехугольной пирамиды равна 1 и наклонена к плоскости основания под углом α = 60 градусов.
Сторона а основания равна: а = 2*А*cos α = 2*1*(1/2) = 1.
Площадь основания So = a² = 1² = 1 кв.ед.
Угол наклона боковых граней к основанию равен углу α.
Тогда Sбок = So/cos α = 1/(1/2) = 2 кв.ед.
Полная поверхность пирамиды равна:
S = Sбок + So = 2 + 1 = 3 кв.ед.