1. Углы при основании равнобедренного треугольника равны. Значит углы треугольника пропорциональны числам 2:2:5 или 2:5:5. Если х- одна часть, то для решения задачи составим уравнения 2х+2х+5х=180 или 2х+5х+5х =180. 9х=180 12х=180 х=20 х=15 углы 40°,40°,100° углы 30°,75°75°.
2. Сумма внешних углов многоугольника,взятых по одному при каждой вершине, равна 360°. Значит, третий из внешних углов равен 360-200=160°. Угол, смежный с ним, 20°. Второй острый угол равен 90-20 = 70°. ответ: углы треугольника 20°,70°,90.
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны. Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1. Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные. Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1, a <C1A1H1=<B1. Но <C=<C1 a <B=<B1. Значит <BAH=<B1A1H1, a <CAH=<C1A1H1. Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1. Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1. ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1. Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак). Что и требовалось доказать.
Если х- одна часть, то для решения задачи составим уравнения
2х+2х+5х=180 или 2х+5х+5х =180.
9х=180 12х=180
х=20 х=15
углы 40°,40°,100° углы 30°,75°75°.
2. Сумма внешних углов многоугольника,взятых по одному при каждой вершине, равна 360°. Значит, третий из внешних углов равен 360-200=160°. Угол, смежный с ним, 20°.
Второй острый угол равен 90-20 = 70°. ответ: углы треугольника 20°,70°,90.