1.Дополнительные построения :АН параллельно ВСDК параллельно АН2. <КDA + <EDC=90* (смежные с прямым углом) ] } <EDC = <KAD<KAD + <KDA =90*(по т. о сумме углов треугольника)]3.<EDC = <KAD] } Треугольники АКD и DEC - подобны, из чего следует, что <AKD = <DEC ] k( коэффициент подобия) = AD/DC=AK/DE=2/3AK=DE*k=9*2/3=6KHED- прямоугольник ( все углы прямые) }KH+DE=9AH=AK+KH=15Sabc=AH*BC/2 } BC= 2*Sabc/AH=60/15=4 ответ : 4 см
Пусть имеем четырёхугольник АВСД. Свойство четырёхугольника, вписанного в окружность, - сумма противолежащих углов равна 180 градусов. Разделим его диагональю АС на 2 треугольника: АВС и АСД. Так как <D = 180-(<B), то cos D = -cos B. Выразим по теореме косинусов сторону АС из двух треугольников, обозначив АС=у, cos B = х, а cos Д = -х. у² = 3²+10² - 2*3*10*х = 109 - 60х, у² = 5² + 8² +2*5*8*х = 89 + 80х. Вычтем из второго уравнения первое: -20+140х = 0 или х = 20/140 = 1/7. Это cos B = 1/7, а cos Д = -1/7. Теперь можно найти значение диагонали АС: АС² = 109-60*(1/7) = (109*7 - 60) / 7 = 703/7 ≈ 10,021406.
Площадь заданного четырёхугольника определим как сумму площадей треугольников АВС и АСД, площадь которых найдём по формуле Герона. Полупериметр АВС = 11,510703, АСД = 11.510703.