Назовем точки пересечения вписанной в трапецию окружности со сторонами ВС и АД соответственно К и М. Тогда КМ является высотой трапеции и равна 2-м радиусам окружности, т.е. 6см. Площадь трапеции = (ВС+АД)/2*КМ=60. Т.е. ВС+АД=20. По теореме вписанной в 4-угольник окружности: ВС+АД=АВ+СД. Но т.к. АВ=СД, то АВ=СД=20/2=10. В трапеции углы С и Д односторонние, т.е. С+Д=180. Центр вписанной окружности лежит на пересечении биссектрис. Значит угол ОСД=ВСД/2 и СДО=СДА/2. Тогда ОСД+СДО=180/2=90. Рассмотрим треугольник ОСД: угол СОД=180-(ОСД+СДО)=90. Перейдем к описанной возле треугольника ОСД окружности. Т.к. треугольник прямоугольный, то центр окр-ти лежит на середине гипотенузы. Т.е. радиус = СД/2=10/2=5
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.