Пусть дан параллелограмм авсd и его диагональ ас. полный угол а равен сумме меньших углов, из которых он состоит, т.е. ваd = вас + dас = 40 + 20 = 60 градусов. теперь рассмотрим сам параллелограмм. сторона ав является секущей по отношению к пареллельным прям вс и аd (противолежащие стороны параллелограмма параллельны друг другу). по теореме о углах, образованный при пересечении параллельных прямых секущей, сумма односторонних углов, коими являются углы авс и ваd, равна 180 градусам, т.е. авс + ваd = 180. авс = 180 - ваd = 180 - 60 = 120 градусов. больший угол параллелограмма авс равен 180 градусам.
Если соединить заданную точку с вершинами треугольника, то получим 3 треугольника с боковыми сторонами 3, 4 и 5 и с равными основаниями. По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине. а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω Получаем 4 неизвестных: а, α, β и ω. Поэтому добавляем четвёртое уравнение: α + β + ω = 2π. Ниже приведено решение системы этих уравнений методом итераций: α градус α радиан cos α a² = a = 25 24 150.0020 2.6180 -0.8660 45.7850 6.7665 41 40 96.8676 1.6907 -0.1196 45.7830 6.7663 34 30 113.1304 1.9745 -0.3928 45.7848 6.7664. С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.