Рассмотрим боковую грань. Это равнобокая трапеция с основаниями 2 и 8, боковые стороны по 6.
Высота этой трапеции - это апофема А пирамиды.
А = √((6² - ((8-2)/2)²) = √(36 - 9) = √27 = 3√3 см.
Теперь проведём осевое сечение пирамиды через боковое ребро.
В сечении - трапеция с основаниями, равными высотам оснований.
У верхнего h = 2(√3/2) = √3 см.
У нижнего h = 8(√3/2) = 4√3 см.
Проекция бокового ребра на основание равна разности (2/3) высот.
Эта величина равна (2/3)*(4√3 - √3) = (2/3)*3√3 = 2√3 см.
Отсюда находим высоту пирамиды.
Н = √(6² - (2√3)²) = √(36 - 12) = √24 = 2√6 см.
1 у них один угол напротив лежащий и две стороны одинаковые , всё они подобны по одному углу и двум сторонам
3 там не всё видно но я предпологаю что там ещё одни углы равны поэтому треугольники равны по стороне и двум углам т к снизу два угла равны одни из сторон равны и тот угл
4 одни из сторон равны и равны одни углы и т к это параллелограмм то у них противоположные углы равны поэтому эти треугольники равны по одной стороне и двум углам
11 там вообще легко даётся что две стороны равны осталось найти угл между ними и их можно найти 180градусов - те углы которые на плоскости и всё и треугольники равны по двум сторонам и углу между ними