М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
YDA2007
YDA2007
08.02.2021 22:26 •  Геометрия

l аов - развёрнутый. внутри угла проведены два луча: oc и od. l аос=37°
l dob=25°. найти угол cod​

👇
Открыть все ответы
Ответ:
Эвелишка11
Эвелишка11
08.02.2021

∠ВЕС = 34°.

Объяснение:

Треугольник АВС - равнобедренный. (АВ=ВС) =>  (∠BAC = ∠BCA).

Тогда ∠DAB = ∠ACF равны как смежные с равными углами.

Треугольники ABD и FCF равны по двум сторонам (AD=AC, AB=CF)  и углу между ними (∠DAB = ∠ACF).

В равных треугольниках против равных сторон лежат равные углы. Следовательно, ∠DBA = ∠AFC = 31°, а ∠CAF = ∠BDA = 25°.

∠BCA - внешний угол треугольника АСF и равен сумме двух углов, не смежных с ним, то есть ∠BCA = ∠CAF + ∠CFA = 25+31 = 56°.

∠СВЕ - внешний угол треугольника АВС =>  ∠СВЕ  = ∠BAC + ∠BCA.

∠СВЕ  = 56+ 56 = 112°.

Треугольник СВЕ равнобедренный и ∠ВЕС = ∠ЕСВ = (180 - 112/2 = 34° по сумме углов треугольника.

ответ: ∠ВЕС = 34°.


треугольник — авс равнобедренный с основанием .на лучах са, ав и вс, и отмечены соответственно точки
4,5(14 оценок)
Ответ:
bazakechova566
bazakechova566
08.02.2021

Пусть SABCD — четырёхугольная пирамида, в основании которой ромб ABCD. Меньшая диагональ ромба BD = a и острый угол \angle BAD = \alpha.\ SO высота пирамиды, значит, SO \bot (ABCD), следовательно SO \bot OK, так как OK \in (ABCD),\ OK — проекция SK на плоскость (ABCD),\ OK \bot CD ⇒ по теореме о трёх перпендикуляров (ТТП) SK \bot CD, следовательно, \angle SKO = \beta — линейный угол двугранного угла при ребре CD; так как все двугранные углы при основании равны, то точка О — центр вписанной окружности, то есть OK = r.

Найти: 1) \ S_{_{\Pi}} - ? \ 2) \ SO - ?

Решение. Ромб ABCD состоит из четырёх равных прямоугольных треугольников: \triangle AOD = \triangle AOB = \triangle BOC = \triangle COD.

Рассмотрим \triangle AOD (\angle AOD = 90^{\circ}):

OD = \dfrac{BD}{2} = \dfrac{a}{2}

\angle OAD = \dfrac{\angle BAD}{2} = \dfrac{\alpha}{2}

\text{sin} \dfrac{\alpha}{2} = \dfrac{OD}{AD} \Rightarrow AD = \dfrac{OD}{\text{sin} \dfrac{\alpha}{2}} = \dfrac{a}{2 \text{sin} \dfrac{\alpha}{2}}

\text{tg} \dfrac{\alpha}{2} = \dfrac{OD}{AO} \Rightarrow AO = \dfrac{OD}{\text{tg} \dfrac{\alpha}{2}} = \dfrac{a}{2 \text{tg} \dfrac{\alpha}{2}}

Значит, диагональ AC = 2AO = \dfrac{2a}{2 \text{tg} \dfrac{\alpha}{2}} = \dfrac{a}{\text{tg} \dfrac{\alpha}{2}}

Рассмотрим \triangle COD (\angle COD = 90^{\circ}):

r = OK = \dfrac{CO \ \cdotp OD}{CD} = \dfrac{\dfrac{a}{2 \text{tg} \dfrac{\alpha}{2}} \ \cdotp \dfrac{a}{2}}{\dfrac{a}{2 \text{sin} \dfrac{\alpha}{2}}} = \dfrac{a^{2} \ \cdotp 2 \text{sin} \dfrac{\alpha}{2}}{4a \ \text{tg} \dfrac{\alpha}{2}} = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2}}{2}

Высота ромба BM = 2OK = \dfrac{2a \ \text{cos} \dfrac{\alpha}{2} }{2} = a \ \text{cos} \dfrac{\alpha}{2}

Площадь основания пирамиды S_{_{\text{O}}} = BO \ \cdotp CD = a \ \text{cos} \dfrac{\alpha}{2} \ \cdotp \dfrac{a}{2 \text{sin} \dfrac{\alpha}{2}} = \dfrac{a^{2} \ \text{cos} \dfrac{\alpha}{2}}{2 \text{sin} \dfrac{\alpha}{2}}} = \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2}}{2}

Рассмотрим \triangle SOK (\angle SOK = 90^{\circ}):

\text{tg} \beta = \dfrac{SO}{OK} \Rightarrow SO = OK \text{tg} \beta = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2} \text{tg} \beta}{2}

\text{cos}\beta = \dfrac{OK}{SK} \Rightarrow SK = \dfrac{OK}{\text{cos}\beta} = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2}}{2 \text{cos}\beta}

Определим площадь треугольника SDC:

S_{_{\triangle SDC}} = \dfrac{SK \ \cdotp CD}{2} = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2} \ \cdotp a}{2 \ \cdotp 2 \text{cos}\beta \ \cdotp 2 \text{sin} \dfrac{\alpha}{2}}} = \dfrac{a^{2} \ \text{cos} \dfrac{ \alpha}{2}}{8\text{cos}\beta \ \text{sin} \dfrac{\alpha}{2}} = \dfrac{a^{2} \text{ctg} \dfrac{\alpha}{2}}{8\text{cos}\beta}

Из-за того, что у ромба все стороны равны и все двугранные углы при основании равны, то все боковые грани пирамиды будут тоже равны. Следовательно, площадь боковой поверхности S_{_{\text{B}}} = 4S_{_{\triangle SDC}} = \dfrac{4a^{2} \text{ctg} \dfrac{\alpha}{2}}{8\text{cos}\beta} = \dfrac{a^{2} \text{ctg} \dfrac{\alpha}{2}}{2\text{cos}\beta}

Теперь, зная площадь основания и боковой поверхности пирамиды можно найти площадь полной поверхности:

S_{_{\Pi}} = S_{_{\text{O}}} + S_{_{\text{B}}} = \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2}}{2} + \dfrac{a^{2} \text{ctg} \dfrac{\alpha}{2}}{2\text{cos}\beta} = \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2} (\text{cos} \beta + 1)}{2\text{cos} \beta}

ответ: площадь полной поверхности пирамиды равна \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2} (\text{cos} \beta + 1)}{2\text{cos} \beta}; высота пирамиды равна \dfrac{a \ \text{cos} \dfrac{ \alpha}{2} \text{tg} \beta}{2}.


Нужна основанием четырёхугольной пирамиды является ромб с острым углом α и меньшей диагональю а. все
4,7(58 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ