Пусть — четырёхугольная пирамида, в основании которой ромб Меньшая диагональ ромба и острый угол высота пирамиды, значит, , следовательно так как — проекция на плоскость ⇒ по теореме о трёх перпендикуляров (ТТП) , следовательно, — линейный угол двугранного угла при ребре так как все двугранные углы при основании равны, то точка О — центр вписанной окружности, то есть
Найти:
Решение. Ромб состоит из четырёх равных прямоугольных треугольников:
Рассмотрим
Значит, диагональ
Рассмотрим
Высота ромба
Площадь основания пирамиды
Рассмотрим
Определим площадь треугольника
Из-за того, что у ромба все стороны равны и все двугранные углы при основании равны, то все боковые грани пирамиды будут тоже равны. Следовательно, площадь боковой поверхности
Теперь, зная площадь основания и боковой поверхности пирамиды можно найти площадь полной поверхности:
ответ: площадь полной поверхности пирамиды равна высота пирамиды равна
∠ВЕС = 34°.
Объяснение:
Треугольник АВС - равнобедренный. (АВ=ВС) => (∠BAC = ∠BCA).
Тогда ∠DAB = ∠ACF равны как смежные с равными углами.
Треугольники ABD и FCF равны по двум сторонам (AD=AC, AB=CF) и углу между ними (∠DAB = ∠ACF).
В равных треугольниках против равных сторон лежат равные углы. Следовательно, ∠DBA = ∠AFC = 31°, а ∠CAF = ∠BDA = 25°.
∠BCA - внешний угол треугольника АСF и равен сумме двух углов, не смежных с ним, то есть ∠BCA = ∠CAF + ∠CFA = 25+31 = 56°.
∠СВЕ - внешний угол треугольника АВС => ∠СВЕ = ∠BAC + ∠BCA.
∠СВЕ = 56+ 56 = 112°.
Треугольник СВЕ равнобедренный и ∠ВЕС = ∠ЕСВ = (180 - 112/2 = 34° по сумме углов треугольника.
ответ: ∠ВЕС = 34°.