Гай Авре́лий Вале́рий Диоклетиа́н (лат. Gaius Aurelius Valerius Diocletianus, имя при рождении — Диокл (лат. Dioclus); 22 декабря 244 года, Далмация — 3 декабря 311 года, Салона) — римский император с 20 ноября 284 года по 1 мая 305 года. Приход к власти Диоклетиана завершил так называемый кризис третьего века в Риме. Он установил твёрдое правление и устранил фикцию, согласно которой император был лишь первым из сенаторов (принцепсом), после чего объявил себя полновластным правителем. С его правления начинается период в римской истории, называемый доминатом.
В 303 году, желая вернуть Риму былое величие, начал
Объяснение:
ответ: задача 1: ОВ=4см; угол ОАВ=28°
Задача 2: угол АОВ=125°, угол ОАВ=30°
Объяснение: задание 1
Соединим центр окружности О с точкам касания В и С, у нас пооучились отрезки ОС и ОВ, которые, являются радиусами. По условиям ОС=4, следовательно ОС=ОВ=4см. Итак: ОВ=4см.
Касательные АВ и АС равны, поскольку, они соприкасаются с окружностью и соединяются в одной точке. Прямая АО, проведённая из вершины А, делит угол ВАС пополам. По условиям угол ВАС= 56° и если прямая АО делит его пополам, то угол
ОАВ= углу ОАС=56÷2=28°. Угол ОАВ=28°
ЗАДАЧА 2
Рассмотрим углы около центра О. Нам по условиям известны 2 угла и мы сразу можем найти угол АОВ. Угол АОВ=360-120-115= 125°; Угол АОВ=125°. Зная что угол АОВ=125°, а угол АВО=25° (по условиям), то угол ОАВ=180-125-25=30°
Угол ОАВ=30°
От себя хочу добавить, что не исключено, что в задании 2 опечатка, потому что так как треугольник равнобедренный, то угол АОВ должен быть равен углу АОС, но они разные по величине. По условиям АОС=120°, а мы нашли АОВ= 125°, тоже опираясь на эти условия
АВ/А1В1=АС/А1С1=ВС/В1С1 , тогда треугольники будут подобны
АВ:А1В1=7:3,5=2
АС:А1С1=10,4:5,2=2
ВС:В1С1=5,6:2,8=2
Поэтому треугольники подобны с коэффициентом подобия 2