Aob-равнобедренный по определению (ao=bo).▲aod -равнобедренный по определению (ao=do).меньшая сторона прямоугольника равна 6 см.найдите длины диагоналей,если они пересекаются под углом 60° ! !
Пусть данная трапеция АВСД, ВС||АД АВ=СД=13 Опустим из вершин В и С высоты на АД. Пусть меньшее основание трапеции ВС=х Тогда ВС:АД=2/3 ВС=2АД/3 АД=ВС+АН+МД АН найдем из прямоугольного треугольника АВН по т.Пифагора. АН=5, проверьте ( это треугольник из троек Пифагора, легко запоминается отношение сторон) АН=МД=5 ВС:АД=2/3 х:(х+10)=2:3 3х=2х+20 х=20 ВС=20 см Высота, опущенная из тупого угла равнобедренной трапеции делит сторону на отрезки, больший из которых равен полусумме оснований. ⇒ АМ=(ВС+АД):2=АН+НД=25 см S АВСД=ВН*АМ=12*25=150 см²
В треугольнике может быть только один тупой угол - угол против основания. Высота, проведенная к основанию, является и биссектрисой и медианой. Тогда боковая сторона равна 4√3/3, так как угол при основании равен 30°. Высота, проведенная к боковой стороне, равна Н=√((4√3/3)²-(2√3/3)²)=6/3=2 см. Можно и так: Угол при основании равен 30°, тогда высота, проведенная к боковой стороне - это катет, лежащий против угла 30° и равен половине гипотенузы (основания данного треугольника = 4см). ответ: высота равна 2см.
ВС||АД
АВ=СД=13
Опустим из вершин В и С высоты на АД.
Пусть меньшее основание трапеции ВС=х
Тогда ВС:АД=2/3
ВС=2АД/3
АД=ВС+АН+МД
АН найдем из прямоугольного треугольника АВН по т.Пифагора. АН=5, проверьте ( это треугольник из троек Пифагора, легко запоминается отношение сторон)
АН=МД=5
ВС:АД=2/3
х:(х+10)=2:3
3х=2х+20
х=20
ВС=20 см
Высота, опущенная из тупого угла равнобедренной трапеции делит сторону на отрезки, больший из которых равен полусумме оснований. ⇒
АМ=(ВС+АД):2=АН+НД=25 см
S АВСД=ВН*АМ=12*25=150 см²