М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
баги82
баги82
05.06.2021 17:56 •  Геометрия

Впараллелограммеabcd на стороне bc взята точка p так что bp: pc =3: 1 o точка пересечения диагоналей выразите векторы ao и pa через векторы x=ab y=ad

👇
Ответ:
Aizere1111
Aizere1111
05.06.2021

Так как ВР:РС=3:1 , то на ВР приходится 3 части, а на РС - одна часть. Значит, ВС разделено на 4 части, а  РС - это 1/4 часть от ВС. Вектор РС=1/4*ВС   ⇒   вектор СР= -1/4*ВС= -1/4*AD= -1/4*y .

По правилу параллелограмма сложения векторов: АС=АВ+АD, тогда АО=1/2*АС=1/2*(х+у)

По правилу вычитания векторов: РА=АС-СР=(х+у)-(-1/4*y)=x+3/4*y

4,6(27 оценок)
Открыть все ответы
Ответ:
Кириджа114
Кириджа114
05.06.2021

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​
4,8(54 оценок)
Ответ:
vladazheleznova06
vladazheleznova06
05.06.2021

Задача

В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.

Объяснение:

АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D,  АВ=СD=4 см, ∠ВDВ₁=45°.

Т.к. DВ-биссектриса  ∠D, то ∠АDВ=30°,

ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный :    tg60°=ВD/ВА или  √3=ВD/4 или ВD=4√3 см

cos60°=ВА/АD или 0,5=4/АD  , АD=8 см.

АD║ВС,АD-секущая ⇒  ∠АDВ=∠DВС=30°  как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.

ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.

V=P(осн)*h.

V=(4+4+4+8)*4√3 =80√3 ( см³)

4,4(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ