Если мы проведем высоту к вершине из которой выходит диагональ, то поделим большее основание на 2 отрезка равных 1 и 3, т.к. в прямоугольном треугольнике с углами 45 градусов катеты равны, следовательно длина проведенной высоты равна 3. Теперь находим площадь равнобедренной трапеции, зная что меньшее основание равно 2, умножаем его на высоту и получаем 6, далее находим разницу между большим и меньшим основанием, 4-2=2. умножаем 2 на 3 и делим пополам (т.к. площадь равнобедренного треугольника, равна половине произведения его основания на высоту) получаем 3. Далее складываем 3 и 6, получаем 9, следовательно площадь трапеции равна 9
1) Пусть большая диагональ ромба - а; тогда площадь равностороннего треугольника - SΔ=а²√3/4.
2) Если тупой угол ромба = 120°, то острый угол - 180-130=60°; обозначим сторону ромба - с (все стороны ромба равны между собой); рассматриваем треугольник образованный двумя полудиагоналями и стороной ромба - прямоугольный, один из катетов = а/2, угол между этим катетом и гипотенузой (стороной ромба) 30° (диагонали ромба являются биссектрисами его углов).⇒ а/2=с*cos30°? c=а/2*2/√3=а/√3; находим площадь ромба: S=c²sin60°=a²/3 * √3/2=а²√3/6; площадь ромба/площадь треугольника 2/3;