Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
Начертим окружность с центром в точке А произвольного радиуса (большего, чем расстояние до прямой ВС). Точки пересечения этой окружности с прямой ВС - К и М. Начертим две окружности одинакового произвольного радиуса (большего половины отрезка КМ) с центрами в точках К и М. Через точки пересечения этих окружностей (Е и F) проводим прямую. EF ∩ BC = H. АН - искомая высота.
Прямая EF всегда пройдет через точку А, так как является серединным перпендикуляром к отрезку КМ, а точка А равноудалена от концов этого отрезка, а значит лежит на серединном перпендикуляре.
Это ты к чему?