∠NMK=30° ∠KMP=30° так как МК- биссектриса угла М ∠NKM=∠KMP=30° - внутренние накрест лежащие при параллельных NK и MP и секущей МК
Треугольник MNK - равнобедренный NM=NK=KP=8 см
Проводим высоты NF и KE на сторону МР
Из прямоугольного треугольника MNF: ∠ M =60° ∠MNF=30° MF=4 см ( катет против угла в 30° равен половине гипотенузы) По теореме Пифагора NF²=MN²-FM²=8²-4²=64-18=48 NF=4√3 см h ( трапеции)=4√3 см
Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
У ромба все стороны равны, сл-но 160:4=40см - каждая сторона.
S= a*b*sina
S=40*40*3/10=480см²