Нормализованная экспоненциальная запись числа – это запись вида
a = ± m * P^(q)
Где q – целое число (положительное, отрицательное или ноль) m – правильная Р-ичная дробь, у которой целая часть состоит из одной цифры, при этом m – это мантисса числа, а q – порядок (или экспонента) числа.
Обозначим P,Q,A утверждение что х принадлежит соответствующему отрезку ¬А отрицание А, то есть х не принадлежит А перепишем и упростим исходную формулу P→((Q∧¬A)→P) известно что X→Y=¬X∨Y (доказывается просто, например через таблицу истинности) тогда: P→(¬(Q∧¬A)∨P) раскроем скобку ¬(Q∧¬A) с закона де Моргана (стыдно их не знать, если что это такие же основы как и таблицы истинности) P→(¬Q∨¬¬A∨P) = P→(¬Q∨A∨P) = ¬P∨¬Q∨A∨P ¬P∨P=1 то есть всегда истинно и 1∨Х=Х значит ¬P и P можно убрать остается ¬Q∨A Значит х либо принадлежит А либо не принадлежит Q для выполнения этого условия необходимо чтобы все значения Q принадлежали А, тогда минимальное А совпадает с Q ответ А=[40,77]
1,17213*10^(-3)
Пошаговое Объяснение:
Нормализованная экспоненциальная запись числа – это запись вида
a = ± m * P^(q)
Где q – целое число (положительное, отрицательное или ноль) m – правильная Р-ичная дробь, у которой целая часть состоит из одной цифры, при этом m – это мантисса числа, а q – порядок (или экспонента) числа.
В нашем случае:
1,7321=0,17321*10^(1)=1,7321*10^(0)
Тогда окончательно имеем:
1,7213E-24=1,17213*10^(-3)