где {\displaystyle \alpha }\alpha — некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция {\displaystyle x(t)=x_{0}e^{\alpha t}}x(t)=x_{0}e^{{\alpha t}}. Если рождаемость превосходит смертность ({\displaystyle \alpha >0}\alpha >0), размер популяции неограниченно и очень быстро возрастает. В действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестаёт быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста:
где {\displaystyle x_{s}}x_{s} — «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению {\displaystyle x_{s}}x_{s}, причём такое поведение структурно устойчиво.
program name; var i,n,x,summa,count:integer; nechet:boolean; begin Writeln('Vvedite n: '); readln(n);//получаем n summa:=0; count:=0; i:=1; if(n mod 2 = 1) then nechet := true else nechet := false; //проверяем четное число или нет while i<n do begin//пока число меньше n if(nechet) then//если число нечентное begin summa:=summa+i*i*i;//прибавляем к сумме куб этого числа end else//если число четное begin summa:=summa+i*i;//прибавляем квадрат числа end; i:=i+1;//прибавляем число на 1 end; writeln(' summa: ', summa);//выводим сумму readln(); end.
Модель Мальтуса Править
Согласно модели, предложенной Мальтусом, скорость роста пропорциональна текущему размеру популяции, то есть описывается дифференциальным уравнением:
{\displaystyle {\dot {x}}=\alpha x}{\dot x}=\alpha x,
где {\displaystyle \alpha }\alpha — некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция {\displaystyle x(t)=x_{0}e^{\alpha t}}x(t)=x_{0}e^{{\alpha t}}. Если рождаемость превосходит смертность ({\displaystyle \alpha >0}\alpha >0), размер популяции неограниченно и очень быстро возрастает. В действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестаёт быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста:
{\displaystyle {\dot {x}}=\alpha \left(1-{\frac {x}{x_{s}}}\right)x}{\dot x}=\alpha \left(1-{\frac {x}{x_{{s\right)x,
где {\displaystyle x_{s}}x_{s} — «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению {\displaystyle x_{s}}x_{s}, причём такое поведение структурно устойчиво.