Объяснение:
качестве испытания ЭНИАКу первой была поставлена задача по математическому моделированию термоядерного взрыва супербомбы по гипотезе Улама-Теллера. Фон Нейман, который одновременно работал консультантом и в Лос-Аламосской лаборатории, и в Институте Мура, предложил группе Теллера использовать ЭНИАК для расчётов ещё в начале 1945 года. Решение проблемы термоядерного оружия требовало такого огромного объёма вычислений, что справиться с ним не могли никакие электромеханические калькуляторы, имевшиеся в распоряжении лаборатории. В августе 1945 физики Лос-Аламосской лаборатории Николас Метрополис и Стенли Френкель (англ.) посетили институт Мура, и Герман Голдстайн вместе со своей женой Адель, которая работала в команде программистом и была автором первого руководства по работе с ЭНИАКом[4], познакомили их с техникой программирования ЭНИАКа. После этого они вернулись в Лос-Аламос, где стали работать над программой под названием «The Los Alamos Problem».
Производительность ЭНИАКа была слишком мала для полноценного моделирования, поэтому Метрополис и Френкель сильно у уравнение, игнорируя многие физические эффекты и стараясь хотя бы приблизительно рассчитать лишь первую фазу взрыва дейтерий-тритиевой смеси в одномерном Детали и результаты выполненных в ноябре–декабре 1945 года расчётов до сих пор засекречены. Перед ЭНИАКом была поставлена задача решить сложнейшее дифференциальное уравнение, для ввода исходных данных к которому понадобилось около миллиона перфокарт. Вводная задача была разбита на несколько частей, чтобы данные могли поместиться в память компьютера. Промежуточные результаты выводились на перфокарты и после перекоммутации снова заводились в машину. В апреле 1946[5] года группа Теллера обсудила результаты расчётов и сделала вывод, что они достаточно обнадёживающе (хотя и очень приблизительно) доказывают возможность создания водородной бомбы.
На обсуждении результатов расчёта присутствовал Станислав Улам. Поражённый скоростью работы ЭНИАКа, он предложил сделать расчёты по термоядерному взрыву методом Монте-Карло. В 1947 году на ЭНИАКе было выполнено 9 расчётов этим методом с различными исходными параметрами. После этого метод Монте-Карло стал использоваться во всех вычислениях, связанных с разработкой термоядерного оружия.
Британский физик Дуглас Хартри в апреле и июле 1946 года решал на ЭНИАКе проблему обтекания воздухом крыла самолета, движущегося быстрее скорости звука. ЭНИАК выдал ему результаты расчётов с точностью до седьмого знака. Об этом опыте работы Хартри написал в статье в сентябрьском выпуске журнала Nature за 1946 год[6].
В 1949 году фон Нейман использовал ЭНИАК для расчёта чисел π и e с точностью до 2000 знаков после запятой. Фон Неймана интересовало статистическое распределение цифр в этих числах. Предполагалось, что цифры в этих числах появляются с равной вероятностью, а значит — компьютеры могут генерировать действительно случайные числа, которые можно использовать как вводные параметры для вычислений методом Монте-Карло. Вычисления для числа e были выполнены в июле 1949 года, а для числа π — за один день в начале сентября. Результаты показали, что «цифры в числе π идут в случайном порядке, а вот с числом e всё обстояло значительно хуже» [7].
На ЭНИАКе весной 1950 года был произведён первый успешный численный прогноз погоды командой американских метеорологов Жюлем Чарни (англ.), Филипом Томсоном, Ларри Гейтсом, норвежцем Рагнаром Фьюртофтом (англ.) и математиком Джоном фон Нейманом. Они использовали упрощённые модели атмосферных потоков на основе уравнения вихря скорости для баротропного газа. Это упрощение понизило вычислительную сложность задачи и позволило произвести расчёты с использованием доступных в то время вычислительных мощностей[8]. Расчёты велись начиная с 5 марта 1950 года в течение 5 недель, пять дней в неделю в три 8-часовые смены. Ещё несколько месяцев ушло на анализ и оценку результатов. Описание расчётов и анализ результатов были представлены в работе «Numerical Integration of Barotropic Vorticity Equation»[9], опубликованной 1 ноября 1950 года в журнале Tellus. В статье упоминается, что прогноз погоды на следующие 24 часа на ЭНИАКе был выполнен за 24 часа, то есть прогноз едва успевал за реальностью. Большая часть времени уходила на распечатку перфокарт и их сортировку. Во время расчётов приходилось на ходу вносить изменения в программу и ждать замены перегоревших ламп. При должной оптимизации работы ЭНИАКа, говорилось в работе, расчёт можно было бы выполнить за 12 часов, а при использовании более совершенных машин — за 30 минут. Для прогноза использовались карты погоды над территорией США и Канады за 5, 30, 31 января и 13 февраля 1949 года. После расчётов прогнозные карты сравнивались с реальными для оценки качества прогноза[10]
ТОРОИД
Объяснение:Нам нужно узнать вычеркнутое геометрическое тело, поэтому, для начала, запишем количество символом каждого тела, а также количество символов всего предложения:
'Тороид' --- 6 символов.'шар' --- 3 символа.'цилиндр' --- 7 символов.'тетраэдр' --- 8 символов.'конус' --- 5 символов.'додекаэдр' --- 9 символов.[все предложение] --- 72 символа.Итак, ученик вычеркнул какое-то тело и заодно, ставшие лишними запятые и пробелы. Запятая + пробел --- 2 символа.
Изначально каждый символ весит 1 байт. Так как в нашем предложении мы насчитали 72 символа, то оно будет весить соответственно 72 байта.
Но потом из него вычеркнули X символов, а кодировку преобразовали в 16 битную, то есть теперь один символ весит не 1 байт, а 2 байта - то есть в 2 раза больше. Попробуем посмотреть, сколько весит теперь наша строка: (72 - X) * 2 байта.
В условии говорится, что она оказалась на 448 бит больше, чем исходная. Переведём 448 бит в байты: 448 бит / 8 = 56 байт. Получается:
(72 - X) * 2 байта - 72 байта = 56 байт.(72 - X) * 2 байта = (56 + 72) байт = 128 байт.72 - X = (128 байт / 2 байта) = 64 (символа).72 = (64 + X).(72 - 64) = X = 8.Итак, мы нашли X - вычеркнутое количество символов - (8). 2 символа ушли на пробел с запятой, поэтому слово будет состоять из 8 - 2 = 6 символов. Возвратившись в начало, где мы писали количество символов для каждого слова, мы видим, что слово, состоящее из 6 символов - это 'Тороид'. В ответ пишем ТОРОИД.
Фухх... Подробнее некуда..) Отметьте как "лучший" там корона под ответом должна появится, возможно не сразу), если всё устраивает. Если нет - пишите, поменяю.