1, 2, 3, 4
Объяснение:
Введем обозначения:
a = X > 0, b = X > 4
Тогда выражение будет иметь вид (a + b) → b и нужно найти условия, когда оно ложно. Вместо этого, мы будем искать, когда отрицание этого условия истинно, т.е. истинность ¬( (a + b) → b)
Для начала избавимся от импликации
¬( ¬(a + b) + b)
А теперь примерим к внешнему отрицанию закон де-Моргана
(a + b) · ¬b
Раскрываем скобки
a · ¬b + b · ¬b
a · ¬b + 0
a · ¬b
Делаем обратную замену
( X > 0) · ¬(X > 4)
( X > 0) · (X ≤ 4)
Переведем это на более понятный язык:
X > 0 И X ≤ 4, или
0 < X ≤ 4
Из целых чисел сюда подойдут 1, 2, 3, 4.
Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.
Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.
Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.
Понятно, что это дело условное, можно придумать множество кодировки.
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.