1. Лабири́нт (др.-греч. λαβύρινθος) — какая-либо структура (обычно в двухмерном или трёхмерном пространстве), состоящая из запутанных путей к выходу (и/или путей, ведущих в тупик). Под лабиринтом у древних греков и римлян подразумевалось более или менее обширное пространство...
2. Нужен дачик ультрозвуковой можно использовать как альтернативу дачик касания, если лабиринт одного цвета то можно использовать дачики цвета.Из этих дачиков можно проходить лабиринт главное разобраться в програмировании робота и какой тебе удобно дадчик.лично я бы использовал дачик цвета и касания.
3. Правило правой руки или одной руки.
Универсальный алгоритм прохождения любых лабиринтов был описан только через столетие в книге французского математика Э. Люка "Recreations matematiques", изданной в 1882 году. Интересно, что Люка при описании алгоритма указал на первенство другого французского математика М. Тремо. Таким образом, алгоритм стал известен как алгоритм Люка-Тремо.
Тремо предлагает следующие правила: выйдя из любой точки лабиринта, надо сделать отметку на его стене (крест) и двигаться в произвольном направлении до тупика или перекрестка; в первом случае вернуться назад, поставить второй крест, свидетельствующий, что путь пройден дважды - туда и назад, и идти в направлении, не пройденном ни разу, или пройденном один раз; во втором - идти по произвольному направлению, отмечая каждый перекресток на входе и на выходе одним крестом; если на перекресте один крест уже имеется, то следует идти новым путем, если нет - то пройденным путем, отметив его вторым крестом.
Объяснение:
Горизонтальная съемка местности в простейшем варианте выполняется с теодолита и рулетки. Съемочное обоснование обычно создают проложением теодолитных ходов. Если участок съемки имеет вытянутую форму, то теодолитный ход прокладывают по его оси; при этом отдельные пункты съемочного обоснования можно определять из геодезических засечек. Если участок имеет овальную форму, то прокладывают замкнутый ход по его границе; внутри участка можно проложить диагональные ходы.
При горизонтальной съемке положение отдельных точек определяют относительно пунктов съемочного обоснования и линий, соединяющих их, применяя засечек (угловых, линейных, комбинированных);
- полярный перпендикуляров створов.
Широко также применяется обмеров зданий и сооружений и расстояний между ними с рулетки засечек. При угловой засечке положение точки 1 определяют относительно двух пунктов съемочного обоснования А и В с двух измеренных горизонтальных углов α1 и β1. Положение другой точки - точки 2 определяют, измеряя два других угла α2 и β2 (рис.7.3). Результаты измерений записывают в журнал.
Рис.7.3 Рис.7.4
При построении плана при точках А и В с транспортира строят углы α1 и β1 и в пересечении линий получают изображение точки 1 на плане. Аналогично находят на плане положение точки 2.
Если расстояние до точки 1 не превышает длины рулетки, положение точки 1 определяют линейной засечкой, при которой измеряют расстояния А - 1 и В - 1 ; при построении плана из точки А проводят дугу радиусом, равным расстоянию А - 1 в масштабе плана, а из точки В - радиусом, равным расстоянию В - 1 в масштабе плана. Точка пересечения этих дуг является изображением точки 1 на плане.
Точность измерения горизонтальных углов при угловой засечке определяется точностью их построения на плане транспортиром,т.е. порядка 10' - 15'. Допустимую ошибку измерения расстояний при линейной засечке рассчитывают по формуле:
ms = 0,3 мм * М,
где М - знаменатель масштаба съемки.
Полярный Полярный съемки - это реализация полярной системы координат. Теодолит устанавливают на пункте съемочного обоснования А, принимая его за начало ( полюс ) местной полярной системы координат. Полярная ось совмещается с направлением на другой пункт съемочного обоснования В. Затем измеряют горизонтальный угол β1, образованный направлением АВ и направлением на снимаемую точку 1, и расстояние S1 от точки А до точки 1 (рис.7.4). При построении плана положение точки 1 получают, откладывая на стороне угла β1, построенного транспортиром, расстояние S1 в масштабе плана.
Рассчитаем среднюю квадратическую ошибку измерения углов и расстояний при полярном съемки, если ошибка положения точки 1 задана и равна Мp.
В полярной системе координат ошибка положение точки выражается формулой:
(7.1)
где mβ - ошибка измерения угла β; ms - ошибка измерения полярного расстояния.
По принципу равных влияний имеем:
m2s = ( S * mβ/ )2 = M2 /2, (7.2)
откуда
и (7.3)
Пусть масштаб съемки 1:М=1:2 000, тогда Мp=0.5 мм * 2 000=1 м. При S=100 м вычисления по формулам (7.3) дают mβ=24', ms =0.7м перпендикуляров перпендикуляров является реализацией обычной прямоугольной системы координат. Пусть линия АВ - одна из сторон теодолитного хода. Примем ее за ось l, начало координат совместим с пунктом А; ось d расположим перпендикулярно линии АВ. Положение точки 1 определяется двумя перпендикулярами l1 и d1 (рис.7.5), длины которых измеряют мерной лентой или рулеткой.
Объяснение:
молди атындағы қазақ ұлттық университетінің журналистика факультетінің ғылыми кеңесінің төрағасы болып айдар адам келмеды