Сделаем простое преобразование: Мы получили конъюнкцию b и выражения в круглых скобках. Она ложна, если ложно хотя бы b в этом выражении. Поищем колонку, в которой всегда стоит ноль, если ноль в колонке F. Это предпоследняя колонка, следовательно она содержит значения для b (ведь в колонке указано значение одной переменной)
А теперь воспользуемся истинным значением F. F истинно только если истинны одновременно и b, и выражение в скобках. А в скобках находится дизъюнкция с и инверсии a. Дизъюнкция ложна, если ложны оба её компонента, т.е. если ложно с и истинно а (из-за инверсии). Это дает нам комбинацию cabF=0110 или acbF=1010. Находим одну из этих строк: 1010 третья снизу. Следовательно, подписи колонок acbF.
a c b F 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1
Проанализируем алгоритм. Правило а) добавляет справа нуль при четном количестве единиц или единицу при нечетном. Правило б) делает то же самое, но с учетом правила а) количество единиц всегда будет четным, поэтому всегда будет добавляться ноль. Подытоживая, можно утверждать, что к числу будут дописаны справа: - 10 (при нечетном количестве остальных единиц); - 00 (при четном количестве единиц). Минимальным числом R, которое превышает 43, является число 44. Получим его двоичную запись. 44 / 2 = 22, остаток 0 22 / 2 = 11, остаток 0 11 / 2 = 5, остаток 1 5 / 2 = 2, остаток 1 2 / 2 = 1, остаток 0 Записываем частное (оно всегда единица!) и приписываем к нему остатки в обратном порядке. 44₁₀ = 101100₂ Отделяем два последних разряда: 1011 00 Строим для части 1011 разряды по алгоритму. Единиц три, следовательно надо приписать 10. Получаем 101110₂ Переведем его в десятичную систему. 101110₂ = 1х2⁵+0х2⁴+1х2³+1х2²+1х2¹+0х2⁰=32+8+4+2=46₁₀
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
Сделаем простое преобразование:
Мы получили конъюнкцию b и выражения в круглых скобках. Она ложна, если ложно хотя бы b в этом выражении. Поищем колонку, в которой всегда стоит ноль, если ноль в колонке F. Это предпоследняя колонка, следовательно она содержит значения для b (ведь в колонке указано значение одной переменной)
? ? b F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
А теперь воспользуемся истинным значением F. F истинно только если истинны одновременно и b, и выражение в скобках. А в скобках находится дизъюнкция с и инверсии a. Дизъюнкция ложна, если ложны оба её компонента, т.е. если ложно с и истинно а (из-за инверсии). Это дает нам комбинацию cabF=0110 или acbF=1010. Находим одну из этих строк: 1010 третья снизу. Следовательно, подписи колонок acbF.
a c b F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1