М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Вычеслить алгоритм разветвеленной структуры. Результаты записать в таблицу ​


Вычеслить алгоритм разветвеленной структуры. Результаты записать в таблицу ​

👇
Открыть все ответы
Ответ:
smchnc2004
smchnc2004
18.03.2020

from random import randint

S1 = [randint(1,100) for i in range(20)]

summa1 = 0

summa2 = 0

for i in S1:

   if i % 2 == 0:

       summa1 += i

   else:

       summa2 += i

print(f"Сумма чётных = {summa1}")

print(f"Сумма нечёт = {summa2}")

print(max(S1)) # Значение наибольшего элемента в массиве

print(min(S1)) # Значение наименьшего элемента в массиве

summa = 0

for i in S1:

   if i < 30:

       summa += i

print(f"Сумма чисел меньше 30-ти = {summa}")

summa = S1[2]

for i in S1:

   summa *= i

print(f"Произведение элементов с индексов 2({S1[2]}) = {summa}")


Задайте одномерный массив, содержащий 20 элементов, взятых случайным образом из интервала [1, 100].В
4,6(48 оценок)
Ответ:
natalijamatijch
natalijamatijch
18.03.2020
Каждая из компонент связности должна быть кликой (иначе говоря, каждые две вершины в одной компоненте связности должны быть связаны ребром). Если в i-ой компоненте связности n_i вершин, то общее число рёбер будет суммой по всем компонентам связности:

\displaystyle \sum_{i=1}^K\frac{n_i(n_i-1)}2=\frac12\sum_{i=1}^K n_i^2-\frac12\sum_{i=1}^Kn_i=\frac12\sum_{i=1}^K n_i^2-\frac N2

Требуется найти максимум этого выражения (т.е. на самом деле - максимум суммы квадратов) при условии, что сумма всех ni равна N и ni - натуральные числа.

Если K = 1, то всё очевидно - ответ N(N - 1)/2. Пусть K > 1.

Предположим, n1 <= n2 <= ... <= nK - набор чисел, для которых достигается максимум, и n1 > 1. Уменьшим число вершин в первой компоненте связности до 1, а оставшиеся вершины "перекинем" в K-ую компоненту связности. Вычислим, как изменится сумма квадратов:
\Delta(\sum n_i^2)=(1^2+(n_K+n_1-1)^2)-(n_1^2+n_K^2)=2(n_1-1)(n_K-1)
Поскольку по предположению n1 > 1 (тогда и nK > 1), то сумма квадратов увеличится, что противоречит предположению о том, что на выбранном изначально наборе достигается максимум. Значит, максимум достигается, если наименьшая по размеру компонента связности - изолированная вершина. Выкинем эту компоненту связности, останутся K - 1 компонента связности и N - 1 вершина. Будем продолжать так делать, пока не останется одна вершина, тогда получится, что во всех компонентах связности кроме последней должно быть по одной вершине.

Итак, должно выполняться
n_1=n_2=\cdots=n_{K-1}=1;\qquad n_K=N-K+1

Подставив в исходную формулу, получаем
\displaystyle\frac{(N-K)(N-K+1)}{2}

Это и есть ответ.
4,7(55 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ