Алгоритм. Отсортируем массив за O(nlogn). Запустим цикл по всем k, в теле цикла будем искать индексы i <= j, такие, что A[i] + A[j] = -A[k]. Понятно, что этот поиск надо делать за O(n), чтобы общее время работы было квадратичным.
Искать будем с двух указателей. Рассмотрим кусок массива, в котором ищем ответ A[l..r] (первоначально l = 1, r = n). Посмотрим на A[l] + A[r]. Если эта сумма больше, чем нужно, уменьшим на 1 число r, если меньше - увеличим на 1 число l, если равно -A[k] - победа, выводим ответ (l, r, k). Будем повторять это в цикле, пока l не станет больше r.
Если после выполнения цикла по k искомая тройка так и не нашлась, пишем "нет".
Корректность. Пусть в какой-то момент A[l] + A[r] < -A[k]. Тогда, чтобы иметь возможность получить A[i] + A[j] = -A[k], надо сумму увеличить. A[l] оказалось настолько мало, что даже если прибавить к нему самое большое возможное число (а это как раз A[r] - массив-то отсортирован!), то всё равно получается слишком мало. Значит, A[l] в ответе не будет, и можно безбоязненно выкинуть его из рассмотрения. Аналогично будет и в случае, когда A[l] + A[r] > -A[k]. Осталось показать, что если такая тройка индексов существует, то наш алгоритм не выдаст неверный ответ "нет". Но это очевидно: если ответ (I, J, K), то уж при k = K алгоритм что-нибудь да найдёт.
Время работы. Внутренний цикл выдает ответ не более чем за линейное время: всякий раз размер массива уменьшается на 1, всего элементов в массиве n, а на каждом шаге тратится константное время; пусть время выполнения внутреннего цикла T'(n) < an. Тогда все n проходов внешнего цикла затратят время T1(n) <= n T'(n) < an^2. Сортировку можно сделать за время T2(n) < b nlogn < bn^2 Общее время работы T(n) = T1(n) + T2(n) < an^2 + bn^2 = cn^2
//задача 1program _sqrt;var ar:array[1..100] of integer;i:integer;Res:real;beginfor i:=1 to 100 do ar[i]:=i;for i:=1 to 100 do if ar[i] mod 2=0 then res:=res+ar[i];res:=sqrt(res);write(res);end. //задача 2. 100 элементов слишком много для произведенияprogram _sqrt;var ar:array[1..10] of integer;i:integer;res:int64;beginres:=1;for i:=1 to 10 dobeginar[i]:=i;res:=res*sqr(ar[i]);end;write(res);end. //задача 3program _sqrt;var ar:array[1..100] of integer;i:integer;res:int64;beginfor i:=1 to 100 dobeginar[i]:=i;if ar[i] mod 2=1 then res:=res+ar[i];end;write(res);end.
Искать будем с двух указателей. Рассмотрим кусок массива, в котором ищем ответ A[l..r] (первоначально l = 1, r = n). Посмотрим на A[l] + A[r]. Если эта сумма больше, чем нужно, уменьшим на 1 число r, если меньше - увеличим на 1 число l, если равно -A[k] - победа, выводим ответ (l, r, k). Будем повторять это в цикле, пока l не станет больше r.
Если после выполнения цикла по k искомая тройка так и не нашлась, пишем "нет".
Корректность. Пусть в какой-то момент A[l] + A[r] < -A[k]. Тогда, чтобы иметь возможность получить A[i] + A[j] = -A[k], надо сумму увеличить. A[l] оказалось настолько мало, что даже если прибавить к нему самое большое возможное число (а это как раз A[r] - массив-то отсортирован!), то всё равно получается слишком мало. Значит, A[l] в ответе не будет, и можно безбоязненно выкинуть его из рассмотрения. Аналогично будет и в случае, когда A[l] + A[r] > -A[k].
Осталось показать, что если такая тройка индексов существует, то наш алгоритм не выдаст неверный ответ "нет". Но это очевидно: если ответ (I, J, K), то уж при k = K алгоритм что-нибудь да найдёт.
Время работы. Внутренний цикл выдает ответ не более чем за линейное время: всякий раз размер массива уменьшается на 1, всего элементов в массиве n, а на каждом шаге тратится константное время; пусть время выполнения внутреннего цикла T'(n) < an. Тогда все n проходов внешнего цикла затратят время T1(n) <= n T'(n) < an^2.
Сортировку можно сделать за время T2(n) < b nlogn < bn^2
Общее время работы T(n) = T1(n) + T2(n) < an^2 + bn^2 = cn^2