Зная, что изначально в куче было S камней, для победы нужно получить не менее 32, рассмотрим все возможные ходы Пети, при которых он не выиграет. Чтобы Петя не выиграл, после любого его хода в куче должно получиться меньше 32 камней.
Действие А) S+1<32, тогда S<32-1=31
Действие Б) 3*S+1<32, тогда S<(32-1)/3=11
А теперь распишем ходы Вани. Чтобы точно победить, Ване нужно действовать так, чтобы получить максимальный результат - из двух действий максимальный дает действие Б. После его хода в куче должно стать или 32 камня, или больше.
Действие А) 3*(S+1)+1=3*S+4>=32, тогда S>=(32-4)/3=10
Действие Б) 3*(3*S+1)+1=9*S+4>=32, тогда S>=(32-4)/9=4
Таким образом мы понимаем, что нужное для Ваниной победы первым ходом число S должно должно лежать в диапазоне от 4 до 31, тогда минимальным подходящим будет 4. Проверим:
Случай 1. Петя ходит действием А. 4+1=5. Ваня ходит действием Б. 5*3+1=16. Ваня не выиграл.
Случай 2. Петя ходит действием Б. 3*4+1=13. Ваня ходит действием Б. 13*3=39. Ваня выиграл.
Несмотря на то, что если Петя пойдет действием А, Ваня не выиграет, его победа всё равно возможна, если тот пойдет действием Б. А нас именно о случае, когда она возможна, и спрашивают.
Чтобы убедиться в верности рассуждений, проверим, нельзя ли взять еще меньшее число - 3:
Случай 1. Петя ходит действием А. 3+1=4. Ваня ходит действием Б. 3*4+1=13. Ваня не выиграл.
Случай 2. Петя ходит действием Б. 3*3+1=10. Ваня ходит действием Б. 3+10+1=31. Ваня не выиграл.
Таким образом, мы выяснили, что минимальным начальным количеством камней, когда возможна победа Вани первым ходом, является 4.
ПОСЛЕДОВАТЕЛЬНОСТЬ ФИБОНАЧЧИ, математическая ПОСЛЕДОВАТЕЛЬНОСТЬ, каждый член которой является суммой двух предыдущих. Таким образом, если энный член последовательности обозначается хn, то для всей последовательности справедливым будет уравнение: хn+2=хn+хn+1, первыми двумя членами которого будут x1=l и x2=1. Порядок последовательности при этом таков: 1, 1, 2, 3, 5, 8, 13, 21..., следующим числом будет 34, т. к. сумма 13 и 21 равна 34 и т.д. Когда число n становится очень большим, отношение соответствующих членов устремляется к величине (Ц5+l)/2. Это соотношение называется золотым. В природе последовательность Фибоначчи можно проследить на примерах спирального развития сегментов раковины и лепестков подсолнуха, расходящихся лучами из одной точки в центре цветка. см. также ЗОЛОТОЕ СЕЧЕНИЕ.
4
Объяснение:
Зная, что изначально в куче было S камней, для победы нужно получить не менее 32, рассмотрим все возможные ходы Пети, при которых он не выиграет. Чтобы Петя не выиграл, после любого его хода в куче должно получиться меньше 32 камней.
Действие А) S+1<32, тогда S<32-1=31
Действие Б) 3*S+1<32, тогда S<(32-1)/3=11
А теперь распишем ходы Вани. Чтобы точно победить, Ване нужно действовать так, чтобы получить максимальный результат - из двух действий максимальный дает действие Б. После его хода в куче должно стать или 32 камня, или больше.
Действие А) 3*(S+1)+1=3*S+4>=32, тогда S>=(32-4)/3=10
Действие Б) 3*(3*S+1)+1=9*S+4>=32, тогда S>=(32-4)/9=4
Таким образом мы понимаем, что нужное для Ваниной победы первым ходом число S должно должно лежать в диапазоне от 4 до 31, тогда минимальным подходящим будет 4. Проверим:
Случай 1. Петя ходит действием А. 4+1=5. Ваня ходит действием Б. 5*3+1=16. Ваня не выиграл.
Случай 2. Петя ходит действием Б. 3*4+1=13. Ваня ходит действием Б. 13*3=39. Ваня выиграл.
Несмотря на то, что если Петя пойдет действием А, Ваня не выиграет, его победа всё равно возможна, если тот пойдет действием Б. А нас именно о случае, когда она возможна, и спрашивают.
Чтобы убедиться в верности рассуждений, проверим, нельзя ли взять еще меньшее число - 3:
Случай 1. Петя ходит действием А. 3+1=4. Ваня ходит действием Б. 3*4+1=13. Ваня не выиграл.
Случай 2. Петя ходит действием Б. 3*3+1=10. Ваня ходит действием Б. 3+10+1=31. Ваня не выиграл.
Таким образом, мы выяснили, что минимальным начальным количеством камней, когда возможна победа Вани первым ходом, является 4.