Если х1,у1 - координаты одного конца 1-го отрезка, х2,у2 - координаты его второго конца, то уравнение прямой, на которой этот отрезок лежит, такое: у=у1+(у2-у1)(х-х1)/(х2-х1). Для второго отрезка (х3,у3) и (х4,у4), прямая у=у3+(у4-у3)(х-х3)/(х4-х3). Абсцисса точки пересечения (х,у) этих прямых находится из равенства
у1+(у2-у1)(х-х1)/(х2-х1)=у3+(у4-у3)(х-х3)/(х4-х3). Это х надо выразить в виде формулы до написания программы, чтобы х вычислялось в программе по этой формуле.
Схема программы: 1) проверка параллельности отрезков. Если "да", то выход и ответ "не существует". 2) проверка выполнения двух двойных неравенств: x1 <= x <= x2, x2 <= x <= x4. Если оба неравенства "истина", то ответ "существует", иначе "не существует"
Обратите внимание, что х1 должно быть меньше чем х2, и х3 меньше чем х4.
Сторону равностороннего треугольника можно вычислить по формуле -
a=\frac{2h}{\sqrt{3} }a=
3
2h
Где а - длина стороны равностороннего треугольника, h - длина высоты равностороннего треугольника.
Подставим в формулу известные нам значения -
\begin{lgathered}a=\frac{2*6\sqrt{3} }{\sqrt{3} }a=12\end{lgathered}
a=
3
2∗6
3
a=12
a = 12 см.
Площадь равностороннего треугольника можно вычислить по формуле -
S =\frac{a^{2} \sqrt{3} }{4}S=
4
a
2
3
Где S - площадь равностороннего треугольника.
Подставим в формулу известные нам значения -
\begin{lgathered}S =\frac{12^{2} \sqrt{3} }{4}S =\frac{144\sqrt{3} }{4}S = 36\sqrt{3}\end{lgathered}
S=
4
12
2
3
S=
4
144
3
S=36