Нужно найти количество программ, которые из 1 получают 10, количество программ, которые из 10 получают 21, но не проходит через 17 и перемножить найденные значения. Сначала найдём количество программ, получающих 10 из 1.
Обозначим R(n) — количество программ, которые преобразуют число 2 в число n.
Верны следующие соотношения:
1. Если n не делится на 2, то тогда R(n) = R(n - 1), так как существует единственный получения n из n - 1 — прибавление единицы.
2. Пусть n делится на 2.
Если n > 1, то R(n) = R(n / 2) + R(n - 1).
Если n = 1, то R(n) = 1 (два прибавление единицы и удвоение).
Теперь можно постепенно вычислить все значения:
R(2) = R(1) + R(1) = 1 + 1 = 2 = R(3)
R(4) = R(2) + R(3) = 2 + 2 = 4 = R(5),
R(6) = R(3) + R(5) = 2 + 4 = 6 = R(7),
R(8) = R(4) + R(7) = 4 + 6 = 10 = R(9),
R(10) = R(5) + R(9) = 4 + 10 = 14
Программ, получающих из числа 10 число 21, и не содержащих 17 всего одна: 21.
Тем самым, находим ответ: 14 · 1 = 14.
ответ: 14.
Объяснение:
2^3 < 10, 3^3 > 20
2) Если x(x+1) > 10, то (x+1)(x+2) < 10. Это верно при x = -4
(-4)(-3) = 12 > 10; (-3)(-2) = 6 < 10
Но при x = 2 будет ложная посылка (2*3 > 10 - это ложно),
из которой следует ложный вывод 3*4 < 10.
Поэтому импликация верна. ответ x = 2
3) Если x(x+1)(x+2) > 25, то x < x-1
Это сложнее. x < x-1 - ложно при любом х.
Импликация будет истинной, только если посылка ложная.
x(x+1)(x+2) > 25 - должно быть ложно. Это при x = 2.
x(x+1)(x+2) = 2*3*4 = 24.