1)
from turtle import*
up()
goto(30, 20)
down()
goto(30, 60)
goto(80, 60)
goto(80, 30)
goto(150, 30)
goto(150, 50)
goto(160, 30)
goto(170, 20)
goto(30, 20)
up()
goto(40, 30)
down()
goto(40, 30)
goto(70, 50)
goto(70, 30)
goto(40, 30)
2)
from turtle import*
shape("triangle")
forward(200)
stamp()
write("x")
home()
left(90)
forward(180)
stamp()
write("y")
home()
right(90)
forward(40)
home()
left(180)
forward(50)
home()
up()
goto(10, 10)
down()
for i in range(3):
forward(80 - i*20)
left(90)
forward(80 - i*20)
left(90)
forward(80 - i*20)
left(90)
forward(80 - i*20)
left(90)
up()
goto(20 + i*10, 20 + i*10)
down()
Объяснение:
x
2
+
y
2
=
16
...
...
...
...
...
...
.
.
(
1
)
x + y = 4 (2)
rearrange (2) to y = 4 - x (could do x = 4 - y )
substitute y = 4 - x into (1)
hence:
x
2
+
(
4
−
x
)
2
=
16
⇒
x
2
+
16
−
8
x
+
x
2
=
16
and
2
x
2
−
8
x
+
16
−
16
=
0
⇒
2
x
2
−
8
x
=
0
factor and solve : 2x(x - 4 ) = 0
⇒
x
=
0
,
x
=
4
substitute these values into y = 4 - x , to find corresponding values of y.
x = 0 : y = 4 - 0 = 4 → (0 , 4)
x = 4 : y = 4 - 4 = 0 → (4 , 0 )
These are the points of intersection with the line x +y = 4 and the circle
x
2
+
y
2
=
16
Answer link
Объяснение: