Составьте словесный алгоритм решения данной задачи. Дан прямоугольник ABCD. Из угла А проведена биссектриса АЕ, которая делит сторону ВС на отрезки 3 см и 7 см. Найдите площадь прямоугольника ABCD.
Составьте словесный алгоритм решения данной задачи.
Пусть a, b, c − число пассажиров каждой из маршруток. тогда, нужно во-первых: выяснить можно ли поделить пассажиров поровну между тремя маршрутками; во-вторых: если первое утверждение верно, то k : = (a + b + c) div 3; − число пассажиров, которое должно приходиться на 1 маршрутку sum : = 0; − счётчик пересаживаемых пассажиров da : = a - k; if da > 0 then sum : = sum + da; db : = b - k; if db > 0 then sum : = sum + db; dc : = c - k; if dc > 0 then sum : = sum + dc; − если разница числа пассажиров и количества, которое должно быть в маршрутке, число положительное, значит столько пассажиров из данной маршрутки необходимо пересадить. что то типа дальше сама
1. Найти углы BAE и DAE
2. Найти сторону АВ по определению тангенса
3. Найти длину стороны ВС
4.По формуле площади найти площадь прямоугольника
1. Угол BAE=DAE=45°(т.к АЕ биссектриса, а угол ВАD-прямой)
2.треугольник ВАЕ прямоугольный, угол АВЕ-прямой
tg 45°=BE/AB
AB=3
3. BC=7+3=10
4.S=AB×BC=30см²