Определение минимальной длины изгороди садового участка. садовой участок прямоугольной формы имеет площадь s. при каких размерах длины и ширины участка длина изгороди будет наименьшей? составить и модель.
Минимальная длинна изгороди будет при равных длинне и ширине, т.е. участок должен быть квадратным допустим длинна х, тогда ширина S/х общая длинна изгороди 2*(х+S/x) Исследуя данный график для действительных х и S получаем его минимум в точке х^2=S
Алгоритм. Отсортируем массив за O(nlogn). Запустим цикл по всем k, в теле цикла будем искать индексы i <= j, такие, что A[i] + A[j] = -A[k]. Понятно, что этот поиск надо делать за O(n), чтобы общее время работы было квадратичным.
Искать будем с двух указателей. Рассмотрим кусок массива, в котором ищем ответ A[l..r] (первоначально l = 1, r = n). Посмотрим на A[l] + A[r]. Если эта сумма больше, чем нужно, уменьшим на 1 число r, если меньше - увеличим на 1 число l, если равно -A[k] - победа, выводим ответ (l, r, k). Будем повторять это в цикле, пока l не станет больше r.
Если после выполнения цикла по k искомая тройка так и не нашлась, пишем "нет".
Корректность. Пусть в какой-то момент A[l] + A[r] < -A[k]. Тогда, чтобы иметь возможность получить A[i] + A[j] = -A[k], надо сумму увеличить. A[l] оказалось настолько мало, что даже если прибавить к нему самое большое возможное число (а это как раз A[r] - массив-то отсортирован!), то всё равно получается слишком мало. Значит, A[l] в ответе не будет, и можно безбоязненно выкинуть его из рассмотрения. Аналогично будет и в случае, когда A[l] + A[r] > -A[k]. Осталось показать, что если такая тройка индексов существует, то наш алгоритм не выдаст неверный ответ "нет". Но это очевидно: если ответ (I, J, K), то уж при k = K алгоритм что-нибудь да найдёт.
Время работы. Внутренний цикл выдает ответ не более чем за линейное время: всякий раз размер массива уменьшается на 1, всего элементов в массиве n, а на каждом шаге тратится константное время; пусть время выполнения внутреннего цикла T'(n) < an. Тогда все n проходов внешнего цикла затратят время T1(n) <= n T'(n) < an^2. Сортировку можно сделать за время T2(n) < b nlogn < bn^2 Общее время работы T(n) = T1(n) + T2(n) < an^2 + bn^2 = cn^2
Var a, b, c, d, e, f, g, h, i, j, x, y: integer; begin write('введите 10 чисел: '); read(a, b, c, d, e, f, g, h, i, j); if a < 0 then y := y + 1 else x := x + 1; if b < 0 then y := y + 1 else x := x + 1; if c < 0 then y := y + 1 else x := x + 1; if d < 0 then y := y + 1 else x := x + 1; if e < 0 then y := y + 1 else x := x + 1; if f < 0 then y := y + 1 else x := x + 1; if g < 0 then y := y + 1 else x := x + 1; if h < 0 then y := y + 1 else x := x + 1; if i < 0 then y := y + 1 else x := x + 1; if j < 0 then y := y + 1 else x := x + 1; writeln('количество положительных чисел: ', x); writeln('количество отрицательных чисел: ', y); end.
допустим длинна х, тогда ширина S/х
общая длинна изгороди 2*(х+S/x)
Исследуя данный график для действительных х и S получаем его минимум в точке х^2=S