4. A & ¬(¬B ∨ C) ↔ A & B & ¬C (высказывания являются эквивалентными)
5. ложное
Объяснение:
3.
(¬A & B) ∨ (A & ¬B) ∨ (A & B) = (¬A & B) ∨ (A & B) ∨ (A & ¬B) = B & (¬A ∨ A) ∨ (A & ¬B) = B & 1 ∨ (A & ¬B) = B ∨ (A & ¬B) = (B ∨ A) & (B ∨ ¬B) = (B ∨ A) & 1 = B ∨ A
Согласно переместительному закону:
(¬A & B) ∨ (A & ¬B) ∨ (A & B) = (¬A & B) ∨ (A & B) ∨ (A & ¬B)
Согласно распределительному закону для логического сложения:
(¬A & B) ∨ (A & B) = B & (¬A ∨ A)
Согласно закону исключения третьего:
¬A ∨ A = 1
Согласно закону исключения констант для логического умножения:
B & 1 = B
Согласно распределительному закону для логического умножения:
B ∨ (A & ¬B) = (B ∨ A) & (B ∨ ¬B)
Согласно закону исключения третьего:
B ∨ ¬B = 1
Согласно закону исключения констант для логического умножения:
(B ∨ A) & 1 = B ∨ A
4.
A & ¬(¬B ∨ C) = A & ¬(¬B) & ¬C = A & B & ¬C
Согласно закону де Моргана:
¬(¬B ∨ C) = ¬(¬B) & ¬C
Согласно закону двойного отрицания:
¬(¬B) = B
A & ¬(¬B ∨ C) ↔ A & B & ¬C
(высказывания являются эквивалентными)
Составим таблицы истинности для доказательства эквивалентности (картинки)
5.
(¬(X < 5) ∨ (X < 3)) & (¬(X < 2) ∨ (X < 1)) при X = 1
Подставим значение X в высказывание, а затем определим истинность или ложность
Uses Crt; const n=5; m=7; type Mas = array [1..n, 1..m] of integer; var i, j, j1, j2: integer; Sumj1, Sumj2: real; A: Mas; begin ClrScr; Randomize; SumJ1:=0; SumJ2:=0; for i:=1 to n do for j:=1 to m do A[i,j]:=random (10); WriteLn (' Massiv A: '); for i:=1 to n do begin for j:=1 to m do Write (A[i,j]:4); WriteLn; end; WriteLn; repeat Write (' Stolbez #1 = '); ReadLn(j1); until (j1>=1) and (j1<=m); repeat Write (' Stolbez #2 = '); ReadLn(j2); until (j2>=1) and (j2<=m) and (j1<>j2); for i:= 1 to n do SumJ1 := SumJ1+A[i,j1]; for i:= 1 to n do SumJ2:=SumJ2+A[i,j2]; SumJ1:=SumJ1/n; SumJ2:=SumJ2/n; WriteLn; WriteLn (' Srednee stolbza ', j1, ' = ', SumJ1:4:2); WriteLn (' Srednee stolbza ', j2, ' = ', SumJ2:4:2); ReadLn; end.
3. B ∨ A
4. A & ¬(¬B ∨ C) ↔ A & B & ¬C (высказывания являются эквивалентными)
5. ложное
Объяснение:
3.
(¬A & B) ∨ (A & ¬B) ∨ (A & B) = (¬A & B) ∨ (A & B) ∨ (A & ¬B) = B & (¬A ∨ A) ∨ (A & ¬B) = B & 1 ∨ (A & ¬B) = B ∨ (A & ¬B) = (B ∨ A) & (B ∨ ¬B) = (B ∨ A) & 1 = B ∨ A
Согласно переместительному закону:
(¬A & B) ∨ (A & ¬B) ∨ (A & B) = (¬A & B) ∨ (A & B) ∨ (A & ¬B)
Согласно распределительному закону для логического сложения:
(¬A & B) ∨ (A & B) = B & (¬A ∨ A)
Согласно закону исключения третьего:
¬A ∨ A = 1
Согласно закону исключения констант для логического умножения:
B & 1 = B
Согласно распределительному закону для логического умножения:
B ∨ (A & ¬B) = (B ∨ A) & (B ∨ ¬B)
Согласно закону исключения третьего:
B ∨ ¬B = 1
Согласно закону исключения констант для логического умножения:
(B ∨ A) & 1 = B ∨ A
4.
A & ¬(¬B ∨ C) = A & ¬(¬B) & ¬C = A & B & ¬C
Согласно закону де Моргана:
¬(¬B ∨ C) = ¬(¬B) & ¬C
Согласно закону двойного отрицания:
¬(¬B) = B
A & ¬(¬B ∨ C) ↔ A & B & ¬C
(высказывания являются эквивалентными)
Составим таблицы истинности для доказательства эквивалентности (картинки)
5.
(¬(X < 5) ∨ (X < 3)) & (¬(X < 2) ∨ (X < 1)) при X = 1
Подставим значение X в высказывание, а затем определим истинность или ложность
(¬(1 < 5) ∨ (1 < 3)) & (¬(1 < 2) ∨ (1 < 1)) = (¬(истина) ∨ (истина)) & (¬(истина) ∨ (ложь)) = (ложь ∨ истина) & (ложь ∨ ложь) = истина & ложь = ложь
Общий порядок действий:
1) скобки
2) НЕ (¬, черта над выражением) - значение противоположно исходному высказыванию
3) И (&, ∧) - истинно, когда оба исходных высказывания истинны
4) ИЛИ (∨) - ложно, когда оба исходных высказывания ложны